SPECTRUM LOCALIZATION OF A PERTURBED OPERATOR IN A STRIP AND APPLICATIONS

Michael Gil'

Communicated by P.A. Cojuhari

Abstract. Let A and \tilde{A} be bounded operators in a Hilbert space. We consider the following problem: let the spectrum of A lie in some strip. In what strip the spectrum of \tilde{A} lies if A and \tilde{A} are "close"? Applications of the obtained results to integral operators and matrices are also discussed. In addition, we apply our perturbation results to approximate the spectral strip of a Hilbert–Schmidt operator by the spectral strips of finite matrices.

Keywords: operator, spectrum, perturbation, approximation, integral operator, matrix.

Mathematics Subject Classification: 47A10, 47A55, 47B10.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let \mathcal{H} be a complex separable Hilbert space with a scalar product (\cdot, \cdot) , the norm $\|\cdot\| = \sqrt{(\cdot, \cdot)}$ and unit operator I. By $\mathcal{B}(\mathcal{H})$ we denote the set of all bounded linear operators in \mathcal{H} . For an $A \in \mathcal{B}(\mathcal{H})$, A^* is the adjoint operator,

||A|| is the operator norm, $\sigma(A)$ is the spectrum,

$$\alpha(A) := \sup_{s \in \, \sigma(A)} \operatorname{Re} \, \, \sigma(A) \quad \text{and} \quad \beta(A) := \inf_{s \in \, \sigma(A)} \operatorname{Re} \, \, \sigma(A).$$

So $\sigma(A)$ lies in the strip $\{z \in \mathbb{C} : \beta(A) \leq \text{Re } z \leq \alpha(A)\}$, which will be called the spectral strip of A.

We consider the following problem: Let $\tilde{A} \in \mathcal{B}(\mathcal{H})$. In what strip $\sigma(\tilde{A})$ lies, if the spectral strip of A is known, and \tilde{A} and A are sufficiently "close"? The perturbation theory of operators is very rich. The classical results are presented in the book [17], the interesting recent results can be found in [1–6,11,18,22–24] and references, which are given therein, but to the best of our knowledge the above-pointed problem, was not investigated in the available literature although it is important for the localization of the spectrum and various other applications, cf. [8].

Throughout this paper c and b are real constants, satisfying the inequalities

$$c < \beta(A)$$
 and $b > \alpha(A)$. (1.1)

Below we check that the integrals

$$X_c := 2 \int_{0}^{\infty} e^{-(A^* - cI)t} e^{-(A - cI)t} dt$$

and

$$Y_b := 2 \int_{0}^{\infty} e^{-(bI - A^*)t} e^{-(bI - A)t} dt$$

converge in the operator norm.

Now we are in a position to formulate our main result.

Theorem 1.1. Let $A, \tilde{A} \in \mathcal{B}(\mathcal{H})$ and $q = ||\tilde{A} - A||$. Then $\beta(\tilde{A}) \geq c$, provided $q||X_c|| < 1$. In addition, $\alpha(\tilde{A}) \leq b$, provided $q||Y_b|| < 1$.

The proof of this theorem is presented in the next section. Obviously,

$$||X_c|| \le J_c(A) := 2 \int_0^\infty e^{2ct} ||e^{-At}||^2 dt$$

and

$$||Y_b|| \le \hat{J}_b(A) := 2 \int_0^\infty e^{-2bt} ||e^{At}||^2 dt.$$

Let us check that $J_c(A)$ and $\hat{J}_b(A)$ are finite. To this end apply the representation

$$e^{At} = \frac{1}{2\pi i} \int_{I} e^{zt} (zI - A)^{-1} dz,$$

where L is a closed Jordan contour surrounding $\sigma(A)$, cf. [8]. Taking a positive $\epsilon < b - \alpha(A)$, with a fitting L, we easily have

$$e^{bt} \|e^{At}\| \le m_{\epsilon} e^{(-b+\alpha(A)+\epsilon)t} \quad (t \ge 0),$$

where

$$m_{\epsilon} = \frac{1}{2\pi} \int_{I_{\epsilon}} \|(zI - A)^{-1}\| dz.$$

Since $-b + \alpha(A) + \epsilon < 0$, it is not hard to check that $\hat{J}_b(A) < \infty$. Similarly, taking a positive $\epsilon < \beta(A) - c$, we have

$$e^{ct} \|e^{-At}\| < \text{const } e^{(c-\beta(A)+\epsilon)t}.$$

Since $c - \beta(A) + \epsilon < 0$, we obtain $J_c(A) < \infty$.

Now put

$$w_c(A) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \|(A + (is - c)I)^{-1}\|^2 ds$$

and

$$\hat{w}_b(A) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \|(A - (is + b)I)^{-1}\|^2 ds.$$

By the classical Parseval–Planscherel equality, for any $x \in \mathcal{H}$ we have

$$(X_c x, x) = \left(\int_0^\infty e^{(Ic - A^*)t} e^{(Ic - A)t} x \, dt, x \right) = \int_0^\infty \|e^{-(A - Ic)t} x\|^2 dt$$
$$= \frac{1}{2\pi} \int_{-\infty}^\infty \|(A + (is - c)I)^{-1} x\|^2 ds.$$

Hence,

$$||X_c|| \le w_c(A). \tag{1.2}$$

Similarly,

$$||Y_b|| \le \hat{w}_b(A). \tag{1.3}$$

If A is normal (i.e. $AA^* = A^*A$), then by the spectral representation (see, for instance, [17] and the references therein), we easily have

$$||e^{At}|| = e^{\alpha(A)t} \quad (t \ge 0).$$

Hence,

$$||e^{-At}|| < e^{\alpha(-A)t} = e^{-\beta(A)t}$$

Therefore,

$$J_c(A) \le 2 \int_0^\infty e^{2(c-\beta(A)t} dt = \frac{1}{\beta(A) - c}$$

and

$$\hat{J}_b(A) \le 2 \int_0^\infty e^{-2(b-\alpha(A))t} dt = \frac{1}{b-\alpha(A)}.$$

Hence, making use of Theorem 1.1, we obtain the following result.

Corollary 1.2. Let $A \in \mathcal{B}(\mathcal{H})$ be normal. Then

$$\beta(\tilde{A}) \ge \beta(A) - q$$
 and $\alpha(\tilde{A}) \le \alpha(A) + q$.

2. PROOF OF THEOREM 1.1

For a self-adjoint operator $Y \in \mathcal{B}(\mathcal{H})$ we write Y > 0, if Y is positive definite, i.e.

$$\inf_{x \in \mathcal{H}, ||x|| = 1} (Yx, x) > 0.$$

By the Lyapunov theorem, cf. [8, Theorem I.5.1], the inequality $\alpha(B) < 0$ holds if and only if there exists a positive definite selfadjoint operator $X \in \mathcal{B}(\mathcal{H})$, such that the operator $XB + B^*X$ is negative definite. Consider the equation

$$XB + B^*X = -2I.$$
 (2.1)

As is well-known [8, Section 1.5], the solution X_0 of (2.1) is representable as

$$X_0 = 2\int_{0}^{\infty} e^{B^*t} e^{Bt} dt (2.2)$$

and the integral converges in the operator norm.

If $\beta(A) > c$, then $\beta(A - cI) > 0$ and $\alpha(-A + cI) < 0$. According to (2.2) X_c is a solution of the equation

$$X(-A+cI) + (-A+cI)^*X = 2I.$$
 (2.3)

If $\alpha(A) < b$, then $\alpha(A - bI) < 0$, and according to (2.2) Y_b is a solution to the equation

$$X(A - bI) + (A^* - bI)X = -2I. (2.4)$$

Furthermore, put $E = \tilde{A} - A$. Then from (2.3) we have

$$(\tilde{A} - cI)X_c + X_c(\tilde{A} - cI) = (A - cI)X_c + X_c(A - cI) + EX_c + X_cE$$

= $2I + EX_c + X_cE$.

If $q||X_c|| < 1$, then Re $(cI - \tilde{A})X_c < 0$. Here and below Re $B = (B + B^*)/2$. By the Lyapunov theorem we have $\alpha(cI - \tilde{A}) < 0$, or $\beta(\tilde{A} - cI) > 0$. This proves that $\beta(\tilde{A}) > c$. In addition, (2.4) implies

$$(\tilde{A} - bI)Y_b + Y_b(\tilde{A} - bI) = (A - bI)Y_b + Y_b(A - bI)EY_b + Y_bE$$

= $-2I + EY_b + Y_bE$.

If $q||Y_b|| < 1$, then Re $(\tilde{A} - bI)Y_b < 0$. By the Lyapunov theorem

$$\alpha(\tilde{A} - bI) = \alpha(\tilde{A}) - b < 0.$$

So $\alpha(\tilde{A}) < b$. The theorem is proved.

3. FINITE DIMENSIONAL OPERATORS

In this section $\mathcal{H} = \mathbb{C}^n$ is the *n*-dimensional complex Euclidean space. The set of all $n \times n$ matrices is denoted by $\mathbb{C}^{n \times n}$. Besides ||A|| $(A \in \mathbb{C}^{n \times n})$ is the spectral norm:

$$||A||^2 = r_s(A^*A),$$

where $r_s(\cdot)$ means the spectral radius.

In this section we are going to obtain estimates for $J_c(A)$ and $\hat{J}_b(A)$ for $A \in \mathbb{C}^{n \times n}$. Let $N_2(A)$ be the Hilbert–Schmidt (Frobenius) norm of A:

$$N_2(A) := (\text{trace } (A^*A))^{1/2}.$$

The following quantity (the departure of normality) plays a key role in this section:

$$g(A) := \left[N_2^2(A) - \sum_{k=1}^n |\lambda_k(A)|^2 \right]^{1/2},$$

where $\lambda_k(A)$ (k = 1, ..., n) are the eigenvalues of A taken with their multiplicities. Since

$$\sum_{k=1}^{\infty} |\lambda_k(A)|^2 \ge \left| \sum_{k=1}^{\infty} \lambda_k^2(A) \right| = |\text{trace } A^2|,$$

one can write

$$g^2(A) \le N_2^2(A) - |\text{trace } A^2|.$$

If A is a normal matrix: $AA^* = A^*A$, then g(A) = 0, since

$$N_2^2(A) = \sum_{k=1}^n |\lambda_k(A)|^2$$

in this case.

The following properties of g(A) are checked in [15, Section 3.1]. The inequality

$$g^2(A) \le 2N_2^2(A_I) \quad (A_I = (A - A^*)/2i).$$

is valid, and for any all real number t and any complex number z, one has $g(A) = g(Ae^{it} + zI)$. Moreover, if A_1 and A_2 are commuting $n \times n$ -matrices, then

$$g(A_1 + A_2) \le g(A_1) + g(A_2).$$

In addition, by the inequality between geometric and arithmetic mean values, we have

$$\left(\frac{1}{n}\sum_{k=1}^{n}|\lambda_k(A)|^2\right)^n \ge \left(\prod_{k=1}^{n}|\lambda_k(A)|\right)^2.$$

Hence,

$$g^2(A) \le N_2^2(A) - n(\det A)^{2/n}$$
.

Lemma 3.1. Let $A \in \mathbb{C}^{n \times n}$. Then $J_c(A) \leq M_n(A,c)$ and $\hat{J}_b(A) \leq \hat{M}_n(A,b)$, where

$$M_n(A,c) := \sum_{j,k=0}^{n-1} \frac{g^{j+k}(A)(k+j)!}{2^{j+k}(\beta(A)-c)^{j+k+1}(j!\ k!)^{3/2}}$$

and

$$\hat{M}_n(A,b) := \sum_{j,k=0}^{n-1} \frac{g^{j+k}(A)(k+j)!}{2^{j+k}(b-\alpha(A))^{j+k+1}(j!\ k!)^{3/2}}.$$

Proof. By Theorem 3.5 from [15], for any $B \in \mathbb{C}^{n \times n}$ we have

$$||e^{Bt}|| \le \exp[\alpha(B)t] \sum_{k=0}^{n-1} \frac{g^k(B)t^k}{(k!)^{3/2}} \quad (t \ge 0).$$
 (3.1)

Since $\alpha(-A) = -\beta(A)$, we can write

$$J_{c}(A) \leq 2 \int_{0}^{\infty} e^{2(c-\beta(A))t} \left(\sum_{k=0}^{n-1} \frac{g^{k}(A)t^{k}}{(k!)^{3/2}} \right)^{2} dt$$

$$= 2 \int_{0}^{\infty} \exp[2(c-\beta(A))t] \left(\sum_{j,k=0}^{n-1} \frac{g_{I}^{k+j}(A)t^{k+j}}{(j!k!)^{3/2}} \right) dt$$

$$= \sum_{j,k=0}^{n-1} \frac{2(k+j)!g_{I}^{j+k}(A)}{(2(\beta(A)-c))^{j+k+1}(j!k!)^{3/2}}.$$

So we have proved that $J_c(A) \leq M_n(A, c)$. Similarly, due to (3.1)

$$\hat{J}_b(A) \le 2 \int_0^\infty \exp[2(-b + \alpha(A))t] \left(\sum_{k=0}^{n-1} \frac{g^k(A)t^k}{(k!)^{3/2}}\right)^2 dt$$

$$= 2 \int_0^\infty \exp[2(-b + \alpha(A))t] \left(\sum_{j,k=0}^{n-1} \frac{g_I^{k+j}(A)t^{k+j}}{(j!k!)^{3/2}}\right) dt$$

$$= \sum_{j,k=0}^{n-1} \frac{2(k+j)!g_I^{j+k}(A)}{(2(b-\alpha(A))^{j+k+1}(j!k!)^{3/2}},$$

and thus, the inequality $\hat{J}_b(A) \leq \hat{M}_n(A,b)$ is also valid, as claimed.

If A is normal, then g(A) = 0 and with $0^0 = 1$ we have

$$M_n(A,c) = \frac{1}{\beta(A) - c}$$
 and $\hat{M}_n(A,b) = \frac{1}{b - \alpha(A)}$.

The latter lemma and Theorem 1.1 imply the following corollary.

Corollary 3.2. Let $A, \tilde{A} \in \mathbb{C}^{n \times n}$. Then the condition

$$q\hat{M}_n(A,b) < 1 \tag{3.2}$$

implies $\alpha(\tilde{A}) \leq b$, and the condition

$$qM_n(A,c) < 1. (3.3)$$

implies $\beta(\tilde{A}) \geq c$.

Put

$$F_n(A,x) := \sum_{j,k=0}^{n-1} \frac{g^{j+k}(A)(k+j)!}{2^{j+k}x^{j+k+1}(j!\ k!)^{3/2}} \quad (x>0).$$

Then we can write

$$M_n(A,c) = F_n(A,\beta(A)-c)$$
 and $\hat{M}_n(A,b) = F_n(A,b-\alpha(A)).$

Let $x_n = x_n(q, A)$ be the unique positive root of the equation

$$qF_n(A,x) = 1. (3.4)$$

Then, taking

$$c = \beta(A) - x_n(q, A) - \epsilon \quad (\epsilon > 0),$$

we have

$$qM_n(A, c) = qF_n(A, \beta(A) - c) < qF_n(A, x_n) = 1.$$

Now Corollary 3.2 implies

$$\beta(\tilde{A}) > \beta(A) - x_n(q, A) - \epsilon.$$

Hence, letting $\epsilon \to 0$, we obtain

$$\beta(\tilde{A}) \ge \beta(A) - x_n(q, A). \tag{3.5}$$

Similarly, taking

$$b = x_n(q, A) + \alpha(A) + \epsilon,$$

we have

$$q\hat{M}_n(A, b) = qF_n(A, b - \alpha(A)) < qF_n(A, x_n) = 1.$$

Now Corollary 3.2 implies $\alpha(\tilde{A}) < \alpha(A) + x_n(q, A) + \epsilon$. Hence,

$$\alpha(\tilde{A}) \le \alpha(A) + x_n(q, A). \tag{3.6}$$

We thus have proved the following theorem.

Theorem 3.3. Let $A, \tilde{A} \in \mathbb{C}^{n \times n}$ and let $x_n(q, A)$ be the unique positive root of the equation (3.4). Then inequalities (3.5) and (3.6) are valid.

If g(A)=0, then with $0^0=1$ we can write $F_n(A,x)=\frac{1}{x}$ and thus $x_n(q,A)=q$. The following lemma gives us an estimate for $x_n(q,A)$ in the case $g(A)\neq 0$.

Lemma 3.4. Let $A \in \mathbb{C}^{n \times n}$ and with the notation

$$\eta(A) := \sum_{j,k=0}^{n-1} \frac{g^{j+k}(A)(k+j)!}{2^{j+k}(j!\ k!)^{3/2}},$$

let

$$q\eta(A) \le 1. \tag{3.7}$$

Then

$$x_n(q,A) \le \sqrt[2n]{q\eta(A)}.$$

Proof. In this proof for the brevity put $x_n(q, A) = x_0$ and $F_n(A, x) = F(x)$. Then by (3.7) we have

$$qF(x_0) = 1 \ge qF(1) = q\eta(A).$$

Since F monotonically decreases, hence it follows that $x_0 \leq 1$. Multiplying equation (3.4) by x_0^{2n} we have

$$x_0^{2n} = q \sum_{i,k=0}^{n-1} \frac{g^{j+k}(A)x_0^{2n-j-k-1}(k+j)!}{2^{j+k}(j!\ k!)^{3/2}} \le q\eta(A).$$

This proves the lemma.

About other estimates for the roots of polynomials see for instance the classical book [21] and the references, which are given therein.

Theorem 3.3 and the latter lemma imply the following result.

Corollary 3.5. Let $A, \tilde{A} \in \mathbb{C}^{n \times n}$ and condition (3.7) hold. Then

$$\alpha(\tilde{A}) \le \alpha(A) + \sqrt[2n]{q\eta(A)}$$

and

$$\beta(\tilde{A}) \ge \beta(A) - \sqrt[2n]{q\eta(A)}.$$

4. SPECTRAL STRIPS OF MATRICES "CLOSE" TO TRIANGULAR ONES

Let V_{+} and V_{-} be the strictly upper and lower triangular parts of a matrix

$$A = (a_{jk})_{j,k=1}^n,$$

respectively, i.e.,

$$V_{+} = \begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & a_{2n} \\ \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}, \quad V_{-} = \begin{pmatrix} 0 & \dots & 0 & 0 \\ a_{21} & \dots & 0 & 0 \\ \vdots & \dots & \vdots \\ a_{n1} & \dots & a_{n,n-1} & 0 \end{pmatrix}.$$

In addition, put

$$D = \text{diag } (a_{11}, a_{22}, \dots, a_{nn}),$$

and $A_{+} = D + V_{+}$. So

$$A = A_+ + V_- = D + V_+ + V_-.$$

We are going to apply the results of the previous section with $A = A_+$ and $\tilde{A} = A$. Since the eigenvalues of triangular matrices are the diagonal entries, the obtained results give us bounds for the spectral strip of A.

It is clear that

$$\alpha(A_+) = \alpha(D) = \max_{k=1,\dots,n} \operatorname{Re} a_{kk}$$

and

$$\beta(A_+) = \beta(D) = \min_{k=1,\dots,n} \operatorname{Re} a_{kk}.$$

In addition, $||A - A_+|| = ||V_-||$ and $g(A_+) = N_2(V_+)$, cf. [15, Lemma 3.1]. Thus, for all $\hat{c} < \beta(D)$ and $\hat{b} > \alpha(D)$ we have

$$M_n(A_+, \hat{c}) := \sum_{j,k=0}^{n-1} \frac{N_2^{j+k}(V_+)(k+j)!}{2^{j+k}(\beta(D) - \hat{c})^{j+k+1}(j! \ k!)^{3/2}},$$

and

$$\hat{M}_n(A_+, \hat{b}) := \sum_{j,k=0}^{n-1} \frac{N_2^{j+k}(V_+)(k+j)!}{2^{j+k}(\hat{b} - \alpha(D))^{j+k+1}(j! \ k!)^{3/2}}.$$

Now Corollary 3.2 implies the following result.

Corollary 4.1. Let $A \in \mathbb{C}^{n \times n}$. Then the condition

$$||V_-||\hat{M}_n(A_+,\hat{b})| < 1$$

implies $\alpha(A) \leq \hat{b}$, and the condition

$$||V_-||M_n(A_+,\hat{c})<1$$

implies $\beta(A) \geq \hat{c}$.

Furthermore, we have

$$\eta(A_+) := \sum_{j,k=0}^{n-1} \frac{N_2^{j+k}(V_+)(k+j)!}{2^{j+k}(j!\ k!)^{3/2}}.$$

Therefore condition (3.7) with $A = A_+$ takes the form $||V_-|| \eta(A_+) \le 1$. Under this condition by Lemma 3.4 we obtain

$$x_n(\|V_-\|, A_+) \le \sqrt[2n]{\|V_-\|\eta(A_+)}.$$

Hence, making use of Corollary 3.5, we arrive at the following result.

Corollary 4.2. Let $A \in \mathbb{C}^{n \times n}$ and the condition $||V_-|| \eta(A_+) \leq 1$ hold. Then

$$\alpha(A) \le \alpha(D) + \sqrt[2n]{\|V_-\|\eta(A_+)}$$

and

$$\beta(A) \ge \beta(D) - \sqrt[2n]{\|V_-\|\eta(A_+)}.$$

5. OPERATORS WITH HILBERT-SCHMIDT HERMITIAN COMPONENTS

In this section we obtain estimates for $J_c(A)$ and $\hat{J}_b(A)$ $(A \in \mathcal{B}(\mathcal{H}))$, assuming that

$$A_I = (A - A^*)/(2i)$$
 is a Hilbert–Schmidt operator, (5.1)

i.e.

$$N_2(A_I) := (\text{trace } (A_I^2))^{1/2} < \infty.$$

Numerous integral operators satisfy this condition. We introduce the quantity

$$g_I(A) := \left[2N_2^2(A_I) - 2\sum_{k=1}^{\infty} |\text{Im } \lambda_k(A)|^2 \right]^{1/2} \le \sqrt{2}N_2(A_I),$$

where $\lambda_k(A)$ (k=1,2,...) are the eigenvalues of A taken with their multiplicities and ordered as $|\text{Im }\lambda_{k+1}(A)| \leq |\text{Im }\lambda_k(A)|$ (k=1,2,...). If A is normal, then $g_I(A)=0$, cf. [15, Lemma 9.3].

Lemma 5.1. Let condition (5.1) hold. Then

$$J_c(A) \le M_I(A,c)$$
 and $\hat{J}_b(A) \le \hat{M}_I(A,b)$,

where

$$M_I(A,c) := \sum_{j,k=0}^{\infty} \frac{g_I^{j+k}(A)(k+j)!}{2^{j+k}(\beta(A)-c)^{j+k+1}(j!\ k!)^{3/2}}$$

and

$$\hat{M}_I(A,b) := \sum_{j,k=0}^{\infty} \frac{g_I^{j+k}(A)(k+j)!}{2^{j+k}(b-\alpha(A))^{j+k+1}(j!\ k!)^{3/2}}.$$

Proof. By Theorem 10.1 from [15] for any $B \in \mathcal{B}(\mathcal{H})$ with the property: $B_I = (B - B^*)/(2i)$ is a Hilbert–Schmidt operator, we have

$$||e^{Bt}|| \le \exp[\alpha(B)t] \sum_{k=0}^{\infty} \frac{g_I^k(B)t^k}{(k!)^{3/2}} \quad (t \ge 0).$$
 (5.2)

Since $\alpha(-A) = -\beta(A)$, hence it follows

$$J_{c}(A) \leq 2 \int_{0}^{\infty} e^{2(c-\beta(A))t} \left(\sum_{k=0}^{\infty} \frac{g_{I}^{k}(A)t^{k}}{(k!)^{3/2}} \right)^{2} dt$$

$$= 2 \int_{0}^{\infty} \exp[2(c-\beta(A))t] \left(\sum_{j,k=0}^{\infty} \frac{g_{I}^{k+j}(A)t^{k+j}}{(j!k!)^{3/2}} \right) dt$$

$$= \sum_{j,k=0}^{\infty} \frac{2(k+j)!g_{I}^{j+k}(A)}{(2(\beta(A)-c))^{j+k+1}(j!k!)^{3/2}}.$$

So we have proved that $J_c(A) \leq M_I(A, c)$. Similarly, due to (5.2),

$$\hat{J}_b(A) \le 2 \int_0^\infty \exp[2(-b + \alpha(A))t] \left(\sum_{k=0}^\infty \frac{g_I^k(A)t^k}{(k!)^{3/2}}\right)^2 dt$$

$$= 2 \int_0^\infty \exp[2(-b + \alpha(A))t] \left(\sum_{j,k=0}^\infty \frac{g_I^{k+j}(A)t^{k+j}}{(j!k!)^{3/2}}\right) dt$$

$$= \sum_{j,k=0}^\infty \frac{2(k+j)!g_I^{j+k}(A)}{(2(b-\alpha(A))^{j+k+1}(j!k!)^{3/2}},$$

and thus, the inequality $\hat{J}_b(A) \leq \hat{M}_I(A,b)$ is also valid, as claimed.

If A is normal, then $g_I(A) = 0$ and with $0^0 = 1$ we have

$$M_I(A,c) = \frac{1}{\beta(A) - c}$$
 and $\hat{M}_I(A,b) = \frac{1}{b - \alpha(A)}$.

The latter lemma and Theorem 1.1 imply the following corollary.

Corollary 5.2. Let condition (5.1) hold. Then the inequality $qM_I(A,c) < 1$ implies $\beta(\tilde{A}) \geq c$, and the inequality $q\hat{M}_I(A,b) < 1$ implies $\alpha(\tilde{A}) \leq b$.

Furthermore, put

$$G(A,x) := \sum_{j,k=0}^{\infty} \frac{g_I^{j+k}(A)(k+j)!}{2^{j+k}x^{j+k+1}(j!\ k!)^{3/2}} \quad (x>0).$$

Then we can write

$$M_I(A,c) = G(A,\beta(A)-c)$$
 and $\hat{M}_I(A,b) = G(A,b-\alpha(A)).$

Let y_0 be the unique positive root of the equation

$$qG(A,x) = 1. (5.3)$$

Taking $b = y_0 + \alpha(A) + \epsilon$, we have

$$q\hat{M}_I(A, b) = qG(A, b - \alpha(A)) < qG(A, y_0) = 1.$$

Now Corollary 5.2 implies

$$\alpha(\tilde{A}) \le y_0 + \alpha(A) + \epsilon.$$

Similarly, taking $c = \beta(A) - y_0 - \epsilon$, we have

$$qM_I(A, c) = qG(A, \beta(A) - c) < qG(A, y_0) = 1.$$

Due to Corollary 5.2, $\beta(\tilde{A}) \geq \beta(A) - y_0 - \epsilon$. Since $\epsilon > 0$ is arbitrary, we arrive at our next result.

Theorem 5.3. Let the condition (5.1) hold and y_0 be the unique positive root of equation (5.3). Then $\beta(\tilde{A}) \geq \beta(A) - y_0$ and $\alpha(\tilde{A}) \leq \alpha(A) + y_0$.

If $g_I(A)=0$, then with $0^0=1$ we can write $G(A,x)=\frac{1}{x}$ and thus $y_0=q$. The following lemma gives us an estimate for y_0 in the case $g_I(A)\neq 0$.

Lemma 5.4. Let

$$q \le \sqrt{e}g_I(A). \tag{5.4}$$

Then

$$y_0 \le \zeta(q, g_I(A)),$$

where

$$\zeta(a,d) := \frac{2d}{[\ln(\sqrt{e}d/a)]^{1/2}} \quad (a,d>0).$$

Proof. Since

$$2^{n} = \sum_{k=0}^{n} \frac{n!}{(n-k)! \ k!} \quad (n = 2, 3, ...),$$

we have

$$2^n \ge \frac{n!}{(n-k)! \ k!}$$
 and $2^{j+k} \ge \frac{(j+k)!}{j! \ k!}$.

Thus

$$G(A,x) \le \sum_{j,k=0}^{\infty} \frac{g_I^{j+k}(A)}{x^{j+k+1}(j!\ k!)^{1/2}} = \frac{1}{x}H^2(A,x) \quad (x>0),$$

where

$$H(A,x) := \sum_{j=0}^{\infty} \frac{g_I^j(A)}{x^j(j!)^{1/2}} \quad (x > 0).$$

By the Schwarz inequality,

$$H^2(A,x) = \left(\sum_{j=0}^{\infty} \frac{(\sqrt{2})^j g_I^j(A)}{(\sqrt{2})^j x^j (j!)^{1/2}}\right)^2 \le \sum_{j=0}^{\infty} \frac{1}{2^j} \sum_{j=0}^{\infty} \frac{2^j g_I^{2j}(A)}{x^{2j} j!} = 2 \exp\left[\frac{2g_I^2(A)}{x^2}\right].$$

Thus $y_0 \leq y$, where y is is the unique positive root of the equation

$$1 = \frac{2q}{x} \exp\left[\frac{2g_I^2(A)}{x^2}\right].$$

Or

$$1 = \frac{4q^2}{x^2} \exp \left[\frac{4g_I^2(A)}{x^2} \right].$$

With

$$w = \frac{4g_I^2(A)}{y^2},$$

we obtain

$$1 = \frac{q^2}{g_I^2(A)} w e^w.$$

It is simple to check that $we^{-w} \leq e^{-1}$, and thus $w \leq e^{w-1}$ (w > 0). Therefore,

$$1 \leq \frac{q^2}{g_I^2(A)}e^{2w-1} = \frac{q^2}{eg_I^2(A)}e^{2w}$$

and

$$\frac{1}{2}\ln\left[\frac{eg_I^2(A)}{q^2}\right] \le w,$$

provided $\sqrt{e}g_I(A) \geq q$. Hence

$$\frac{4g_I^2(A)}{y^2} \ge \frac{1}{2} \ln \left[\frac{eg_I^2(A)}{q^2} \right].$$

This implies

$$y_0^2 \le y^2 \le 8g_I^2(A) / \left(\ln \left[\frac{eg_I^2(A)}{q^2} \right] \right) = 4g_I^2(A) / \left[\ln \left(\sqrt{eg_I/q} \right) \right] = \zeta^2(q, g_I(A)),$$

as claimed.

Theorem 5.3 and the latter lemma imply the following corollary.

Corollary 5.5. Let the conditions (5.1) and (5.4) hold. Then the inequalities

$$\alpha(\tilde{A}) \le \alpha(A) + \zeta(q, g_I(A))$$
 and $\beta(\tilde{A}) \ge \beta(A) - \zeta(q, g_I(A))$

are valid.

6. INTEGRAL OPERATORS

Let $L^2 = L^2(0,1)$ be the complex space of scalar functions h defined on [0,1] and equipped with the norm

$$||h|| = \left[\int_{0}^{1} |h(x)|^{2} dx\right]^{1/2}.$$

Let \tilde{A} be the operator defined in $L^2(0,1)$ by

$$(\tilde{A}h)(x) = a(x)h(x) + \int_{0}^{1} k(x,s)h(s)ds \quad (h \in L^{2}, x \in [0,1]),$$
 (6.1)

where a(x) is a real bounded measurable function and k(x,s) is a complex kernel defined on $0 \le x, s \le 1$, and

$$\int_{0}^{1} \int_{0}^{1} |k(x,s)|^{2} ds \, dx < \infty. \tag{6.2}$$

So the Volterra operator V defined by

$$(Vh)(x) = \int_{x}^{1} k(x,s)h(s)ds \quad (h \in L^{2}, x \in [0,1]),$$

is a Hilbert–Schmidt one. Define operator A by

$$(Ah)(x) = a(x)h(x) + \int_{x}^{1} k(x,s)h(s)ds \quad (h \in L^{2}, x \in [0,1]).$$

Then A = D + V, where D is defined by (Dh)(x) = a(x)h(x). Due to [16, Lemma 7.1] and [16, Corollary 3.5] we have $\sigma(A) = \sigma(D)$. So $\sigma(A)$ is real and

$$\beta(A) = a_{\inf} := \inf_{x} a(x)$$
 and $\alpha(A) = a_{\sup} := \sup_{x} a(x)$.

Moreover,

$$N_2(A_I) = N_2(V_I) \le N_2(V) = \left[\int_0^1 \int_x^1 |k(x,s)|^2 ds \ dx \right]^{1/2}.$$

Here $V_I = (V - V^*)/(2i)$. Thus,

$$g_I(A) \le \sqrt{2}N_2(V).$$

Note also, that

$$q = ||A - \tilde{A}|| \le \left[\int_{0}^{1} \int_{0}^{x} |k(x,s)|^{2} ds \ dx \right]^{1/2}.$$

Making use of Corollary 5.5, we arrive at

Corollary 6.1. Let \tilde{A} be defined by (6.1) and let the conditions (6.2) and

$$q \le \sqrt{2e}N_2(V)$$

hold. Then the inequalities

$$\alpha(\tilde{A}) \le a_{\sup} + \zeta(q, \sqrt{2}N_2(V))$$

and

$$\beta(\tilde{A}) \ge a_{\inf} - \zeta(q, \sqrt{2}N_2(V))$$

are valid.

The recent results on the spectral properties of integral operators can be found, for instance, in the papers [7, 9, 10, 12].

7. APPROXIMATION OF THE SPECTRAL STRIP OF A COMPACT OPERATOR BY THE SPECTRAL STRIPS OF FINITE MATRICES

Let $\{d_k\}$ be an orthonormal basis in \mathcal{H} and let A be a Hilbert-Schmidt operator represented in that basis by the infinite matrix $A = (a_{jk})_{i,k=1}^{\infty}$. Introduce the projections

$$P_n = \sum_{k=1}^{n} (\cdot, d_k) d_k \quad (n = 1, 2, \ldots).$$

We will approximate the spectral strip of A by the spectral strips of the operators $A_n = P_n A P_n$ (n = 1, 2, ...). A_n is representable in the mentioned basis by the matrix $A_n = (a_{jk})_{j,k=1}^n$, Put $B_n = A_n + C_n$, where

$$C_n = \sum_{k=n+1}^{\infty} \Delta P_k A \Delta P_k = \sum_{k=n+1}^{\infty} a_{kk} \Delta P_k \quad (\Delta P_k = P_k - P_{k-1}; P_0 = 0),$$

i.e., C_n is representable in $(I - P_n)\mathcal{H}$ by the diagonal matrix diag $(a_{kk})_{k=n+1}^{\infty}$. Since A_n and C_n act in the mutually orthogonal subspaces, one has $A_nC_n = C_nA_n = 0$, and

$$\sigma(B_n) = \sigma(A_n) \cup \sigma(C_n).$$

Thus

$$\alpha(B_n) = \max\{\alpha(A_n), \alpha(C_n)\} = \max\left\{\alpha(A_n), \sup_{k>n} \operatorname{Re} a_{kk}\right\}$$

and

$$\beta(B_n) = \min\{\beta(A_n), \beta(C_n)\} = \min\left\{\beta(A_n), \inf_{k>n} \operatorname{Re} a_{kk}\right\}.$$

In addition, $g_I(B_n) = g_I(A_n) + g_I(C_n)$. But $g_I(C_n) = 0$, since C_n is normal. Thus,

$$g_I(B_n) = g_I(A_n) \le \sqrt{2}N_2(\text{Im } A_n) \quad (\text{Im } A_n = (A_n - A_n^*)/(2i)).$$

Put

$$\nu_n = ||A - B_n||.$$

Since A is a Hilbert–Schmidt operator, we have $B_n \to A$ as $n \to \infty$ in the Hilbert–Schmidt norm, and therefore, $\nu_n \to 0$.

Now we can directly apply the results of Section 5 with $A = B_n$, $\tilde{A} = A$, $g_I(B_n) = g_I(A_n)$ and $q = \nu_n$. In particular, for real constants $\hat{c} < \beta(B_n)$ and $\hat{b} > \alpha(B_n)$, omitting simple calculations, we can write

$$M_I(B_n, \hat{c}) = \sum_{j,k=0}^{\infty} \frac{g_I^{j+k}(A_n)(k+j)!}{2^{j+k}(\beta(B_n) - \hat{c})^{j+k+1}(j! \ k!)^{3/2}}$$

and

$$\hat{M}_{I}(B_{n}, \hat{b}) = \sum_{j,k=0}^{\infty} \frac{g_{I}^{j+k}(A_{n})(k+j)!}{2^{j+k}(\hat{b} - \alpha(B_{n}))^{j+k+1}(j! \ k!)^{3/2}}.$$

Now Corollary 5.2 implies the following result.

Corollary 7.1. Let A be a Hilbert–Schmidt operator, represented in an orthogonal basis by matrix $A = (a_{jk})_{j,k=1}^{\infty}$ and let $A_n = (a_{jk})_{j,k=1}^n$. Assume that $\nu_n M_I(B_n, \hat{c}) < 1$. Then $\beta(A) \geq \hat{c}$. If, in addition, $\nu_n \hat{M}_I(B_n, \hat{b}) < 1$, then $\alpha(A) \leq \hat{b}$.

Since $\nu_n \to 0$ and $a_{nn} \to 0$ as $n \to \infty$, Corollary 7.1 gives us approximations of $\alpha(A)$ and $\beta(A)$ by $\alpha(A_n)$ and $\beta(A_n)$, respectively. About the recent results on spectral approximations of operators, for instance see the papers [13, 14, 19, 20] and the references given therein.

REFERENCES

- [1] B. Abdelmoumen, A. Jeribi, M. Mnif, Invariance of the Schechter essential spectrum under polynomially compact operator perturbation, Extracta Math. 26 (2011), no. 1, 61–73.
- [2] P. Aiena, S. Triolo, Some perturbation results through localized SVEP, Acta Sci. Math. (Szeged) 82 (2016), no. 1–2, 205–219.

- [3] P. Aiena, S. Triolo, Weyl-type theorems on Banach spaces under compact perturbations, Mediterr. J. Math. 15 (2018), no. 3, Paper no. 126, 18 pp.
- [4] A.D. Baranov, D.V. Yakubovich, Completeness of rank one perturbations of normal operators with lacunary spectrum, J. Spectr. Theory 8 (2018), no. 1, 1–32.
- [5] S. Buterin, S.V. Vasiliev, On uniqueness of recovering the convolution integro-differential operator from the spectrum of its non-smooth one-dimensional perturbation, Bound. Value Probl. (2018), Paper no. 55, 12 pp.
- [6] W. Chaker, A. Jeribi, B. Krichen, Demicompact linear operators, essential spectrum and some perturbation results, Math. Nachr. 288 (2015), no. 13, 1476–1486.
- [7] X. Claeys, Essential spectrum of local multi-trace boundary integral operators, IMA J. Appl. Math. 81 (2016), no. 6, 961–983.
- [8] Yu.L. Daleckii, M.G. Krein, Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence, R.I., 1974.
- [9] E. Fedele, A. Pushnitski, Weighted integral Hankel operators with continuous spectrum, Concr. Oper. 4 (2017), no. 1, 121–129.
- [10] M.I. Gil', Invertibility conditions and bounds for spectra of matrix integral operators, Monatsh. Math. 129 (2000), 15–24.
- [11] M.I. Gil', Spectrum perturbations of operators on tensor products of Hilbert spaces,
 J. Math. Kyoto Univ. 43 (2004), no. 4, 719-735.
- [12] M.I. Gil', Spectrum and resolvent of a partial integral operator, Appl. Anal. 87 (2008), no. 5, 555–566.
- [13] M.I. Gil', Spectral approximations of unbounded non-selfadjoint operators, Analysis and Mathem. Physics **3** (2013), no. 1, 37–44.
- [14] M.I. Gil', Spectral approximations of unbounded operators of the type "normal plus compact", Funct. et Approx. Comment. Math. 51 (2014), no. 1, 133–140.
- [15] M.I. Gil', Operator Functions and Operator Equations, World Scientific, New Jersey, 2018.
- [16] M.I. Gil', Norm estimates for resolvents of linear operators in a Banach space and spectral variations, Adv. Oper. Theory 4 (2019), no. 1, 113–139.
- [17] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980.
- [18] R. Killip, Perturbations of one-dimensional Schrödinger operators preserving the absolutely continuous spectrum, Int. Math. Res. Not. 38 (2002), 2029–2061.
- [19] M. Malejki, Approximation of eigenvalues of some unbounded self-adjoint discrete Jacobi matrices by eigenvalues of finite submatrices, Opuscula Math. 27 (2007), no. 1, 37–49.
- [20] M. Malejki, Approximation and asymptotics of eigenvalues of unbounded self-adjoint Jacobi matrices acting in l² by the use of finite submatrices, Cent. Eur. J. Math. 8 (2010), no. 1, 114–128.
- [21] G.V. Milovanovic, D.S. Mitrinovic, Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.

[22] P.M. Pardalos, Th.M. Rassias (eds.), Contributions in Mathematics and Engineering, Springer International Publishing, Switzerland, 2016.

- [23] Th.M. Rassias, V.A. Zagrebnov (eds.), Analysis and Operator Theory. Dedicated in Memory of Tosio Kato's 100th Birthday, Springer, NY, 2019.
- [24] M.L. Sahari, A.K. Taha, L. Randriamihamison, A note on the spectrum of diagonal perturbation of weighted shift operator, Matematiche (Catania) 74 (2019), no. 1, 35–47.

Michael Gil' gilmi@bezeqint.net b https://orcid.org/0000-0002-6404-9618

Department of Mathematics Ben Gurion University of the Negev P.O. Box 653, Beer-Sheva 84105, Israel

Received: December 24, 2020. Accepted: January 24, 2021.