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SPECTRUM LOCALIZATION
OF A PERTURBED OPERATOR
IN A STRIP AND APPLICATIONS
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Abstract. Let A and A be bounded operators in a Hilbert space. We consider the following
problem: let the spectrum of A lie in some strip. In what strip the spectrum of A lies if A
and A are “close”? Applications of the obtained results to integral operators and matrices are
also discussed. In addition, we apply our perturbation results to approximate the spectral
strip of a Hilbert—Schmidt operator by the spectral strips of finite matrices.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let H be a complex separable Hilbert space with a scalar product (,-),
the norm || - || = /(,-) and unit operator I. By B(H) we denote the set of all
bounded linear operators in H. For an A € B(H), A* is the adjoint operator,

||Al is the operator norm, o(A) is the spectrum,

a(A):= sup Re o(A) and p(A4):= inf Re o(4).
s€ a(A) s€ o(A)

So o(A) lies in the strip {z € C : B(A) < Re z < a(A)}, which will be called the
spectral strip of A.

We consider the following problem: Let A € B(H). In what strip o(A) lies, if the
spectral strip of A is known, and A and A are sufficiently “close”? The perturbation
theory of operators is very rich. The classical results are presented in the book [17],
the interesting recent results can be found in [1-6,11,18,22-24] and references, which
are given therein, but to the best of our knowledge the above-pointed problem, was
not investigated in the available literature although it is important for the localization
of the spectrum and various other applications, cf. [8].
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Throughout this paper ¢ and b are real constants, satisfying the inequalities
c< B(A) and b> a(A). (1.1)

Below we check that the integrals
2/ —(A*—cI) t - cI)tdt
0

and
o0

Y, =2 / o~ (bT= A"t —(bI=A)1 g
0
converge in the operator norm.
Now we are in a position to formulate our main result.

Theorem 1.1. Let A, A€ B(H) and q = ||A—A|. Then B(A) > ¢, provided q|| X.|| < 1.
In addition, a(A) < b, provided q||Ys|| < 1.

The proof of this theorem is presented in the next section.

Obviously,
1X, ] < Ju(4) =2 / el |2dt
0
and -
IV3l] < Jy(A) =2 / =20 A2t

0
Let us check that J.(A) and J,(A) are finite. To this end apply the representation

1
At 2—/ (21 — A) 14z,
L

where L is a closed Jordan contour surrounding o(A), cf. [8]. Taking a positive
e < b—a(A), with a fitting L, we easily have

ebtlleAtH < mee(_b+a(A)+€)t (t > O),

= —1 /H(zIfA)flﬂdz.
2
L

Since —b+ a(A) + € < 0, it is not hard to check that J,(A) < co.
Similarly, taking a positive ¢ < 5(A) — ¢, we have

where

e“||e=At|| < const elc=AAF,

Since ¢ — S(A) + € < 0, we obtain J.(A4) < co.
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Now put
1 o0
=5 / (A + (is — c)I)*|%ds

and

dy(A) = /ﬂ| ~ (is + b)T)~"|2ds.
om

By the classical Parseval-Planscherel equality, for any x € H we have

(Xex,x) = </e(1C ANt Ue=A)ty gy x) /||e (A=To)t 12t

/ (A + (is — c)I) " z||*ds.

Hence,
[ Xell < we(A). (1.2)

Similarly,
1Yol < oy (A). (1.3)

If A is normal (i.e. AA* = A*A), then by the spectral representation (see, for instance,
[17] and the references therein), we easily have

le?]| = e (¢ > 0).

Hence,
He—At” < ea(—A)t _ e—B(A)t.
Therefore,
J.(A) <2 / et — _ —
“ BA) e
0
and
o 1
Jy(A) <2 [ e72bmatgy = —
b(A) < /6 b—a(A)
0

Hence, making use of Theorem 1.1, we obtain the following result.

Corollary 1.2. Let A € B(H) be normal. Then

B(A) = B(A) —q and a(A) < a(A) +q.
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2. PROOF OF THEOREM 1.1
For a self-adjoint operator Y € B(H) we write Y > 0, if Y is positive definite, i.e.

inf  (Yx,z)>0.
zEH,||z||=1

By the Lyapunov theorem, cf. [8, Theorem I1.5.1], the inequality a(B) < 0 holds
if and only if there exists a positive definite selfadjoint operator X € B(H), such that
the operator X B + B*X is negative definite. Consider the equation

XB+ B*X = —2I. (2.1)

As is well-known [8, Section 1.5], the solution Xy of (2.1) is representable as

oo
Xo = 2/e3*tef3tdt (2.2)
0
and the integral converges in the operator norm.

If B(A) > ¢, then B(A —cI) > 0 and a(—A + ¢I) < 0. According to (2.2)
X, is a solution of the equation

X(—A+ec)+ (—A+cl)*X =21I. (2.3)
If «(A) < b, then a(A—bI) < 0, and according to (2.2) Y} is a solution to the equation
X(A—bI)+ (A" —bI)X = —21. (2.4)

Furthermore, put E = A — A. Then from (2.3) we have

(A—cDXe+ Xo(A—cI) = (A—cD)Xo+ X (A —cI) + EX, + X.E
=2+ EX,. + X.E.

If ¢| X[ < 1, then Re (cI — A)X. < 0. Here and below Re B = (B + B*)/2.
By the Lyapunov theorem we have a(cf — A) <0, or S(A — ¢I) > 0. This proves that

B(A) > c. In addition, (2.4) implies

(A=Y, + Y, (A—0bD) = (A—-bD)Y, + Yo (A—bI)EY, + Y, E
= -2+ EY, +Y,E.
If ¢||Y3|| < 1, then Re (A — bI)Y; < 0. By the Lyapunov theorem
a(A—bl) =a(Ad)-b<0.

So a(A) < b. The theorem is proved.
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3. FINITE DIMENSIONAL OPERATORS

In this section H = C™ is the n-dimensional complex Euclidean space. The set of all
n X n matrices is denoted by C™*™. Besides ||A| (A € C"*™) is the spectral norm:

IA[* = rs(A"A),

where 7,(-) means the spectral radius. A
In this section we are going to obtain estimates for J.(4) and J,(A)
for A € C"*™. Let N2(A) be the Hilbert—Schmidt (Frobenius) norm of A:

Ny(A) := (trace (A*A))Y/2,
The following quantity (the departure of normality) plays a key role in this section:

1/2
g(A) =

N3(A) =D ()
k=1

where A\y(A4) (k= 1,...,n) are the eigenvalues of A taken with their multiplicities.

Since
ST = DA (A)
k=1

k=1

= |trace A?|,

one can write

g*(A) < Ni(A) — |trace A?|.
If A is a normal matrix: AA* = A*A, then g(A) = 0, since

n

N3 (A) =Y (4

k=1

in this case.
The following properties of g(A) are checked in [15, Section 3.1]. The inequality

g*(A) <2N3 (A7) (Ar=(A-A")/2).

is valid, and for any all real number ¢ and any complex number z, one has
g(A) = g(Ae™ + 2I). Moreover, if A; and Ay are commuting n x n-matrices, then

g(A1 + Az) < g(A1) + g(A2).

In addition, by the inequality between geometric and arithmetic mean values, we have

(iZMA)P) > (H |Ak<A>|> .
k=1 k=1

Hence,
g*(A) < N2(A) — n(det A)*/™.
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Lemma 3.1. Let A € C"*™. Then J.(A) < M,(A,c) and Jy(A) < M, (A,b), where

NS Ak )
My (A, c) == j;o 2R (B(A) — c)ithrL(j1 k1)3/2

and

n—1 j+k 1
. B gAY (k +j)!
M, (A,b) == j;o 25k (b — a(A))IHRI(51 k1)3/2"

Proof. By Theorem 3.5 from [15], for any B € C™*" we have

9

Since a(—A) = —5(A), we can write

2(c—pB(A .
J() <2 [ s ( G )3/2
0 k=0

n—1  k+j k+j
exp[2(c — B(A))t] (Z W) dat

7,k=0

[u
Q
ol
—~
D>
\_/
v
[\~]

2(k + )" (4)
o (2(8(A4) — c))j-‘rk-ﬁ-l (5! k')3/2

n-1 K\ 2
exp[2(—b+a(A))t]< g(k(';)/’;> dt

n-l k+j k+j
“b+ a(A))] (Z W) dt

0 k=0
« k + Mo ™ (4)
2=, 00— (A G
and thus, the inequality J,(A) < M, (A, b) is also valid, as claimed. O
If A is normal, then g(A) = 0 and with 0° = 1 we have
Mo(Aye) = — > and N (Ab) = ——

B(A) —c b—a(A)

The latter lemma and Theorem 1.1 imply the following corollary.
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Corollary 3.2. Let A, A € C"*". Then the condition

qM, (A, b) <1 (3.2)
implies a(A) < b, and the condition

gM, (A, c) < 1. (3.3)

implies B(A) > c.
Put

n—1 ; .
._ gAY (k + )
Fo(A,z) = Zk Qi+ tRA (1 1)3/2 (z >0).
J k=0

Then we can write
M, (A, ¢c) = F,(A,B(A) —¢) and M, (A,b) = F,(A,b— a(A)).
Let @, = 2,(g, A) be the unique positive root of the equation
qF.(A,z) = 1. (3.4)

Then, taking
C:ﬁ(A)—xn((LA)—E (€>0)7

we have
gM,, (A, c) = qF, (A, B(A) — ¢) < ¢Fn(A,x,) = 1.

Now Corollary 3.2 implies
B(A) > B(A) - 2ag, 4) — .
Hence, letting € — 0, we obtain
B(A) = B(A) - z4(q, A). (3.5)
Similarly, taking
b=1x,(q, A) + a(A4) + ¢,

we have .
an(A7b) = an(A, b— O‘(A)) < an(Avxn) =1L

Now Corollary 3.2 implies a(A) < a(A) + z,,(g, A) + €. Hence,

a(A) < a(A) +zn(g, A). (3.6)

We thus have proved the following theorem.

Theorem 3.3. Let A, A € C**™ gnd let xn(q, A) be the unique positive root of the
equation (3.4). Then inequalities (3.5) and (3.6) are valid.
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If g(A) = 0, then with 0° = 1 we can write F,(A,z) = 1 and thus
2n(q, A) = q. The following lemma gives us an estimate for x,(q, A) in the case
g(A) #0.

Lemma 3.4. Let A € C™*" and with the notation
n—1 itk .
,_ g (A) (K + )
n(A) = 2k (1 K1)3/2
3,k=0

let
qn(A4) < 1. (3.7)

2(q, 4) < R/ qn(A).
Proof. In this proof for the brevity put z,(q, A) = z¢ and F,(A,z) = F(x). Then
by (3.7) we have

Then

qF (z0) = 12 qF (1) = qn(A).
Since F' monotonically decreases, hence it follows that 2y < 1. Multiplying equation
(3.4) by 23" we have

n—1 iip 2n—j—k—1 .
on g (A)xy (k+7)!
" =q > QR < qn(A).
§,k=0

This proves the lemma. O

About other estimates for the roots of polynomials see for instance the classical
book [21] and the references, which are given therein.
Theorem 3.3 and the latter lemma imply the following result.

Corollary 3.5. Let A, A € C™*" and condition (3.7) hold. Then
a(4) < a(A) + X/an(A)

and

B(A) = B(A) = X/ qn(A).
4. SPECTRAL STRIPS OF MATRICES “CLOSE” TO TRIANGULAR ONES
Let Vi and V_ be the strictly upper and lower triangular parts of a matrix

A= (ajk)Zkzla

respectively, i.e.,
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In addition, put
D = dlag (0,11, asz, ... ,ann),

and Ay =D+ V. So
A=A, +V_=D+Vy +V_.

We are going to apply the results of the previous section with A = A, and A = A.
Since the eigenvalues of triangular matrices are the diagonal entries, the obtained
results give us bounds for the spectral strip of A.

It is clear that

a(Ay) =a(D) = max Reag

k=1,...,n

and
B(AL) =3(D) = 7rnin Re ay.

k=1,....n

In addition, ||A — A1| = ||V-|| and g(A4) = Na(V4), cf. [15, Lemma 3.1].
Thus, for all ¢ < 8(D) and b > «(D) we have

n—1 j+k 1
o Ny (Ve (K +5)!
= j%::o 2HH(B(D) = &) TR LR
and 1
R . n— NITEV YV (K + 5)!
M, (Ay,b) = Z kL - +5-(H€+1 ?| 13/2°
20 2R (b = a(D)) (4! k)

Now Corollary 3.2 implies the following result.
Corollary 4.1. Let A € C"*™. Then the condition

V- || M, (A, B) < 1
implies a(A) < b, and the condition
VoM (Ay,e) <1

implies B(A) > ¢.

Furthermore, we have

n—1 i+k .
._ N3 (Vi) (k + )
n(Ay) == j;o 20FHk(jUEN3/2

Therefore condition (3.7) with A = A, takes the form ||[V_|n(A+) < 1. Under this
condition by Lemma 3.4 we obtain

ea([Voll, Av) < R/ V-lIn(As ).

Hence, making use of Corollary 3.5, we arrive at the following result.
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Corollary 4.2. Let A € C"*™ and the condition |V_||n(Ay) <1 hold. Then

a(4) < a(D) + F/[IV-|In(A)

and

B(A) =2 (D) = R/ IV-In(Ay).

5. OPERATORS WITH HILBERT-SCHMIDT HERMITIAN COMPONENTS
In this section we obtain estimates for .J.(A) and J,(A) (A € B(H)), assuming that
Ar = (A — A")/(2i) is a Hilbert—Schmidt operator, (5.1)
ie.
No(Ag) == (trace (A2))Y/? < oc.
Numerous integral operators satisfy this condition. We introduce the quantity

1/2

gr(A) = |2N2(4) — 23 [l (AP | < VANS(A),
k=1

where \;(A) (k=1,2,...) are the eigenvalues of A taken with their multiplicities and
ordered as [Im Ag41(A4)| < [Im A (A4)] (k=1,2,...). If A is normal, then g;(A4) =0,
cf. [15, Lemma 9.3].

Lemma 5.1. Let condition (5.1) hold. Then

J(A) < Mi(A,e) and Jy(A) < Mi(A,b),

where +k
[ee] JTk )
M (A, c) = 7;0 2j+k(ﬂ(gj4) (ﬁ;g(fktlj()]‘l k1)3/2
and +k
[e’e] J y
= ;0 20 ija@(:)l;ﬂ(‘ﬁ’:lj();! Ry

Proof. By Theorem 10.1 from [15] for any B € B(H) with the property:
B; = (B — B*)/(2i) is a Hilbert—Schmidt operator, we have

0o &
|leBt|| < exp[a(B)t] kz:% g(jk(')B;)/i

(t>0). (5.2)
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Since a(—A) = —3(A), hence it follows

[e%e] 0o 2
2(c—B(A)t g1
JC(A)§2/6< ) (Z T 3/2>
0

k=0
® 00 ktj k+3j
_ gr (A)t
0 j,k=0
_ i +J) gt A
o c))itht1(41 k1)3/2°
JJc:O

So we have proved that J.(A) < M;(A4,c).
Similarly, due to (5.2),

> A)t
S aa)

k=0
k""] tk+]

b+ a(A <
exp[2(—b+ a(A (Z D 3/2 dt
k

0

B i": 2(k + 4)'g1 " (4)

- 20— (A ))”’““(J' k32

and thus, the inequality J,(A) < M(A,b) is also valid, as claimed. O
If A is normal, then g;(A) = 0 and with 0° = 1 we have

1 1
m and M[(A b) m

The latter lemma and Theorem 1.1 imply the following corollary.

M[(A,C) =

Corollary 5.2. Let condition (5.1) hold. Then the inequality gM;(A,c) <1 implies
B(A) > ¢, and the inequality ¢M(A,b) < 1 implies a(A) <b.

Furthermore, put

i g1 ™ (A) (k + 5)!

G(Az):= ki1 (1 1)3/2

(x > 0).
Jik=0

Then we can write
Mi(A,c¢) = G(A,B(A) —¢) and M(A,b) = G(A,b— a(A)).
Let yg be the unique positive root of the equation

qG(A,I) =1 (53)
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Taking b = yo + «(A) + €, we have
qMI(Av b) = qG(Av b— a(A)) < qG(A, yO) =1

Now Corollary 5.2 implies

a(A) <yo+ a(A) +e.
Similarly, taking ¢ = 5(A) — yo — €, we have
qMI(A) C) = QG(A,ﬁ(A) - C) < QG(A>?JO) =1
Due to Corollary 5.2, B(A) > B(A) — yo — €. Since € > 0 is arbitrary, we arrive at our
next result.

Theorem 5.3. Let the condition (5.1) hold and yo be the unique positive root of
equation (5.3). Then B(A) > B(A) — yo and a(A) < a(A4) + yo.

If g7(A) = 0, then with 0° = 1 we can write G(4,z) = % and thus yo = ¢.
The following lemma gives us an estimate for yo in the case g;(A4) # 0.

Lemma 5.4. Let

q < Vegr(A). (5.4)
Then
Yo < ¢(q,91(A4)),
where 0
((a,d) = T (Vedja)i2 (a,d > 0).

Proof. Since

" n!
=N " (n=23,...
2 R (123,

k=0
we have | G+ k!
n! ; 7+ k)
nos Jj+k >
2 T P =
Thus - o
g1 (4) _ 1.
G(A,z) < Z IR ;H (A,z) (x>0),
j,k=0
where
H(A,z) —i 914
)= 2 e
7=0

By the Schwarz inequality,

) [ (V2)g)(4) - 297 (A) 293 (A)
w =\ X ) <Xy s e[ E]
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Thus yg < y, where y is is the unique positive root of the equation

2 2% (A
1:qexp{ 91(2 )}
T T
Or
4q? 4g7(A)
1= ?exp [ 2
With
4g%(A
w — 91(2 )’
Y
we obtain
= ¢ we®
91(A)

and

provided /egr(A) > gq. Hence

This implies

2 < 4 < 8g3(4) (m [gq 2‘4)]) _ 1g2(4)/ [In (Vear/@)] = (g, g1(A)),

as claimed.
Theorem 5.3 and the latter lemma imply the following corollary.

Corollary 5.5. Let the conditions (5.1) and (5.4) hold. Then the inequalities

a(4) < a(A) + (g, 91(4))  and  B(A) > B(A) — (g, 91(A))

are valid.
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6. INTEGRAL OPERATORS

Let L? = L?(0,1) be the complex space of scalar functions h defined on [0,1] and

equipped with the norm
L 1/2
Il = [ / |h<x>2da:} .
0

Let A be the operator defined in L(0,1) by

(ARh)(x) = a(x)h(z) + /k:(x, s)h(s)ds (h e L? x <€ 0,1]), (6.1)

where a(z) is a real bounded measurable function and k(x,s) is a complex kernel
defined on 0 < z,s < 1, and

O/O/|k(x,5)2ds dzx < oo. (6.2)

So the Volterra operator V' defined by

(Vh)(z) = /k(x,s)h(s)ds (h e L* x €10,1]),

is a Hilbert—Schmidt one. Define operator A by

(AR)(z) = a(z)h(z) + /k:(x, Sh(s)ds (he L2z e01]).

x

Then A = D +V, where D is defined by (Dh)(z) = a(z)h(z). Due to [16, Lemma 7.1]
and [16, Corollary 3.5] we have o(A) = o(D). So o(A) is real and

ﬁ(A) = Qjinf ‘= Hzlf a(x) and a(A) = Qgup ‘= sup Cl(.I‘)

Moreover,

11 1/2
Na(A)) = Na(Vy) < No(V) = //|k:(x,s)\2ds dm] .
0

x

Here V; = (V. — V*)/(2i). Thus,

gr(A) < V2N, (V).
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Note also, that

N 1/2

1
g=A—4) < //|k<a:,s>|2ds dz
0 0

Making use of Corollary 5.5, we arrive at

Corollary 6.1. Let A be defined by (6.1) and let the conditions (6.2) and
q < V2eNy(V)
hold. Then the inequalities
a(A) < agup + C(g, V2N2(V))

and

B(A) = aing — (g, V2N2(V))
are valid.

The recent results on the spectral properties of integral operators can be found,
for instance, in the papers [7,9,10,12].

7. APPROXIMATION OF THE SPECTRAL STRIP OF
A COMPACT OPERATOR
BY THE SPECTRAL STRIPS OF FINITE MATRICES

Let {di} be an orthonormal basis in % and let A be a Hilbert—Schmidt operator rep-
resented in that basis by the infinite matrix A = (a;x)$%—,. Introduce the projections

Pn:zn:(.,dk)dk (71:1,2,...).

k=1

We will approximate the spectral strip of A by the spectral strips of the opera-
tors A, = P,AP, (n = 1,2,...). A, is representable in the mentioned basis by
the matrix A,, = (ajk)?,k:p Put B, = A,, + C,,, where

Cn = Z APkAAPk = Z akkAPk (A,Pk = Pk — Pkfl; P() = O),
k=n+1 k=n+1

i.e., Cy, is representable in (I — P,,)H by the diagonal matrix diag (axx)3,,, -
Since A, and C, act in the mutually orthogonal subspaces, one has
A, C,=CLA, =0, and
o(By) = o(An) U o(Cp).
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Thus

a(B,,) = max{a(A4,),a(Cy)} = max {a(An), 21;2 Re akk}

and
B(B,) = min{3(4,),5(C,)} = min { B(A4,). jf Re aus ).
In addition, g;(By,) = gr(Ayn) + g1(Cr). But g;(C,) = 0, since C,, is normal. Thus,
01(Ba) = g1(An) < VAN (I A,) (Im A, = (A, — 4%)/(20)).
Put
Un = ||A — Byl

Since A is a Hilbert—Schmidt operator, we have B, — A as n — oo in the
Hilbert—Schmidt norm, and therefore, v, — 0.

Now we can directly apply the results of Section 5 with A = B,, A = A,
91(Bn) = g1(4,) and ¢ = v,. In particular, for real constants ¢ < f(B,) and
b> a(By,), omitting simple calculations, we can write

= gtk ,
C 91 (An)(k +j)'
Mi(Bn, &) = Z itk = :
Py 20tk (3(By,) — &) tk+1(j! k!)3/2

and

= ”k(An)(kJrj)!
Z 2]+k

— a(B,) IR k)32

Now Corollary 5.2 implies the following result.

Corollary 7.1. Let A be a Hilbert—Schmidt operator, represented in an orthogonal
basis by matriz A = (ij)szl and let A,, = (ajk);-szl. Assume that v, M1(B,, &) < 1.
Then B(A) > é. If, in addition, v, M;(By,b) < 1, then a(A) < b.

Since v, — 0 and a,, — 0 as n — oo, Corollary 7.1 gives us approximations
of a(A) and B(A) by a(A,) and S(A,), respectively. About the recent results on
spectral approximations of operators, for instance see the papers [13,14,19,20] and
the references given therein.
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