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SPECTRUM LOCALIZATION
OF A PERTURBED OPERATOR

IN A STRIP AND APPLICATIONS
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Abstract. Let A and Ã be bounded operators in a Hilbert space. We consider the following
problem: let the spectrum of A lie in some strip. In what strip the spectrum of Ã lies if A
and Ã are “close”? Applications of the obtained results to integral operators and matrices are
also discussed. In addition, we apply our perturbation results to approximate the spectral
strip of a Hilbert–Schmidt operator by the spectral strips of finite matrices.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let H be a complex separable Hilbert space with a scalar product (·, ·),
the norm ‖ · ‖ =

√
(·, ·) and unit operator I. By B(H) we denote the set of all

bounded linear operators in H. For an A ∈ B(H), A∗ is the adjoint operator,
‖A‖ is the operator norm, σ(A) is the spectrum,

α(A) := sup
s∈ σ(A)

Re σ(A) and β(A) := inf
s∈ σ(A)

Re σ(A).

So σ(A) lies in the strip {z ∈ C : β(A) ≤ Re z ≤ α(A)}, which will be called the
spectral strip of A.

We consider the following problem: Let Ã ∈ B(H). In what strip σ(Ã) lies, if the
spectral strip of A is known, and Ã and A are sufficiently “close”? The perturbation
theory of operators is very rich. The classical results are presented in the book [17],
the interesting recent results can be found in [1–6, 11, 18, 22–24] and references, which
are given therein, but to the best of our knowledge the above-pointed problem, was
not investigated in the available literature although it is important for the localization
of the spectrum and various other applications, cf. [8].
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Throughout this paper c and b are real constants, satisfying the inequalities

c < β(A) and b > α(A). (1.1)

Below we check that the integrals

Xc := 2
∞∫

0

e−(A∗−cI)te−(A−cI)tdt

and

Yb := 2
∞∫

0

e−(bI−A∗)te−(bI−A)tdt

converge in the operator norm.
Now we are in a position to formulate our main result.

Theorem 1.1. Let A, Ã ∈ B(H) and q = ‖Ã−A‖. Then β(Ã) ≥ c, provided q‖Xc‖ < 1.
In addition, α(Ã) ≤ b, provided q‖Yb‖ < 1.

The proof of this theorem is presented in the next section.
Obviously,

‖Xc‖ ≤ Jc(A) := 2
∞∫

0

e2ct‖e−At‖2dt

and

‖Yb‖ ≤ Ĵb(A) := 2
∞∫

0

e−2bt‖eAt‖2dt.

Let us check that Jc(A) and Ĵb(A) are finite. To this end apply the representation

eAt = 1
2πi

∫

L

ezt(zI −A)−1dz,

where L is a closed Jordan contour surrounding σ(A), cf. [8]. Taking a positive
ε < b− α(A), with a fitting L, we easily have

ebt‖eAt‖ ≤ mεe
(−b+α(A)+ε)t (t ≥ 0),

where
mε = 1

2π

∫

L

‖(zI −A)−1‖dz.

Since −b+ α(A) + ε < 0, it is not hard to check that Ĵb(A) <∞.
Similarly, taking a positive ε < β(A)− c, we have

ect‖e−At‖ ≤ const e(c−β(A)+ε)t.

Since c− β(A) + ε < 0, we obtain Jc(A) <∞.
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Now put

wc(A) := 1
2π

∞∫

−∞

‖(A+ (is− c)I)−1‖2ds

and

ŵb(A) := 1
2π

∞∫

−∞

‖(A− (is+ b)I)−1‖2ds.

By the classical Parseval–Planscherel equality, for any x ∈ H we have

(Xcx, x) =
( ∞∫

0

e(Ic−A∗)te(Ic−A)tx dt, x

)
=
∞∫

0

‖e−(A−Ic)tx‖2dt

= 1
2π

∞∫

−∞

‖(A+ (is− c)I)−1x‖2ds.

Hence,
‖Xc‖ ≤ wc(A). (1.2)

Similarly,
‖Yb‖ ≤ ŵb(A). (1.3)

If A is normal (i.e. AA∗ = A∗A), then by the spectral representation (see, for instance,
[17] and the references therein), we easily have

‖eAt‖ = eα(A)t (t ≥ 0).

Hence,
‖e−At‖ ≤ eα(−A)t = e−β(A)t.

Therefore,

Jc(A) ≤ 2
∞∫

0

e2(c−β(A)tdt = 1
β(A)− c

and

Ĵb(A) ≤ 2
∞∫

0

e−2(b−α(A))tdt = 1
b− α(A) .

Hence, making use of Theorem 1.1, we obtain the following result.

Corollary 1.2. Let A ∈ B(H) be normal. Then

β(Ã) ≥ β(A)− q and α(Ã) ≤ α(A) + q.
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2. PROOF OF THEOREM 1.1

For a self-adjoint operator Y ∈ B(H) we write Y > 0, if Y is positive definite, i.e.

inf
x∈H,‖x‖=1

(Y x, x) > 0.

By the Lyapunov theorem, cf. [8, Theorem I.5.1], the inequality α(B) < 0 holds
if and only if there exists a positive definite selfadjoint operator X ∈ B(H), such that
the operator XB +B∗X is negative definite. Consider the equation

XB +B∗X = −2I. (2.1)

As is well-known [8, Section 1.5], the solution X0 of (2.1) is representable as

X0 = 2
∞∫

0

eB
∗teBtdt (2.2)

and the integral converges in the operator norm.
If β(A) > c, then β(A − cI) > 0 and α(−A + cI) < 0. According to (2.2)

Xc is a solution of the equation

X(−A+ cI) + (−A+ cI)∗X = 2I. (2.3)

If α(A) < b, then α(A− bI) < 0, and according to (2.2) Yb is a solution to the equation

X(A− bI) + (A∗ − bI)X = −2I. (2.4)

Furthermore, put E = Ã−A. Then from (2.3) we have

(Ã− cI)Xc +Xc(Ã− cI) = (A− cI)Xc +Xc(A− cI) + EXc +XcE

= 2I + EXc +XcE.

If q‖Xc‖ < 1, then Re (cI − Ã)Xc < 0. Here and below Re B = (B + B∗)/2.
By the Lyapunov theorem we have α(cI − Ã) < 0, or β(Ã− cI) > 0. This proves that
β(Ã) > c. In addition, (2.4) implies

(Ã− bI)Yb + Yb(Ã− bI) = (A− bI)Yb + Yb(A− bI)EYb + YbE

= −2I + EYb + YbE.

If q‖Yb‖ < 1, then Re (Ã− bI)Yb < 0. By the Lyapunov theorem

α(Ã− bI) = α(Ã)− b < 0.

So α(Ã) < b. The theorem is proved.
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3. FINITE DIMENSIONAL OPERATORS

In this section H = Cn is the n-dimensional complex Euclidean space. The set of all
n× n matrices is denoted by Cn×n. Besides ‖A‖ (A ∈ Cn×n) is the spectral norm:

‖A‖2 = rs(A∗A),

where rs(·) means the spectral radius.
In this section we are going to obtain estimates for Jc(A) and Ĵb(A)

for A ∈ Cn×n. Let N2(A) be the Hilbert–Schmidt (Frobenius) norm of A:

N2(A) := (trace (A∗A))1/2.

The following quantity (the departure of normality) plays a key role in this section:

g(A) :=
[
N2

2 (A)−
n∑

k=1
|λk(A)|2

]1/2

,

where λk(A) (k = 1, . . . , n) are the eigenvalues of A taken with their multiplicities.
Since

∞∑

k=1
|λk(A)|2 ≥

∣∣∣∣∣
∞∑

k=1
λ2
k(A)

∣∣∣∣∣ = |trace A2|,

one can write
g2(A) ≤ N2

2 (A)− |trace A2|.
If A is a normal matrix: AA∗ = A∗A, then g(A) = 0, since

N2
2 (A) =

n∑

k=1
|λk(A)|2

in this case.
The following properties of g(A) are checked in [15, Section 3.1]. The inequality

g2(A) ≤ 2N2
2 (AI) (AI = (A−A∗)/2i).

is valid, and for any all real number t and any complex number z, one has
g(A) = g(Aeit + zI). Moreover, if A1 and A2 are commuting n× n-matrices, then

g(A1 +A2) ≤ g(A1) + g(A2).

In addition, by the inequality between geometric and arithmetic mean values, we have
(

1
n

n∑

k=1
|λk(A)|2

)n
≥
(

n∏

k=1
|λk(A)|

)2

.

Hence,
g2(A) ≤ N2

2 (A)− n(det A)2/n.
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Lemma 3.1. Let A ∈ Cn×n. Then Jc(A) ≤Mn(A, c) and Ĵb(A) ≤ M̂n(A, b), where

Mn(A, c) :=
n−1∑

j,k=0

gj+k(A)(k + j)!
2j+k(β(A)− c)j+k+1(j! k!)3/2

and

M̂n(A, b) :=
n−1∑

j,k=0

gj+k(A)(k + j)!
2j+k(b− α(A))j+k+1(j! k!)3/2 .

Proof. By Theorem 3.5 from [15], for any B ∈ Cn×n we have

‖eBt‖ ≤ exp[α(B)t]
n−1∑

k=0

gk(B)tk
(k!)3/2 (t ≥ 0). (3.1)

Since α(−A) = −β(A), we can write

Jc(A) ≤ 2
∞∫

0

e2(c−β(A))t

(
n−1∑

k=0

gk(A)tk
(k!)3/2

)2

dt

= 2
∞∫

0

exp[2(c− β(A))t]




n−1∑

j,k=0

gk+j
I (A)tk+j

(j!k!)3/2


 dt

=
n−1∑

j,k=0

2(k + j)!gj+kI (A)
(2(β(A)− c))j+k+1(j! k!)3/2 .

So we have proved that Jc(A) ≤Mn(A, c).
Similarly, due to (3.1)

Ĵb(A) ≤ 2
∞∫

0

exp[2(−b+ α(A))t]
(
n−1∑

k=0

gk(A)tk
(k!)3/2

)2

dt

= 2
∞∫

0

exp[2(−b+ α(A))t]




n−1∑

j,k=0

gk+j
I (A)tk+j

(j!k!)3/2


 dt

=
n−1∑

j,k=0

2(k + j)!gj+kI (A)
(2(b− α(A))j+k+1(j! k!)3/2 ,

and thus, the inequality Ĵb(A) ≤ M̂n(A, b) is also valid, as claimed.

If A is normal, then g(A) = 0 and with 00 = 1 we have

Mn(A, c) = 1
β(A)− c and M̂n(A, b) = 1

b− α(A) .

The latter lemma and Theorem 1.1 imply the following corollary.
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Corollary 3.2. Let A, Ã ∈ Cn×n. Then the condition

qM̂n(A, b) < 1 (3.2)

implies α(Ã) ≤ b, and the condition

qMn(A, c) < 1. (3.3)

implies β(Ã) ≥ c.
Put

Fn(A, x) :=
n−1∑

j,k=0

gj+k(A)(k + j)!
2j+kxj+k+1(j! k!)3/2 (x > 0).

Then we can write

Mn(A, c) = Fn(A, β(A)− c) and M̂n(A, b) = Fn(A, b− α(A)).

Let xn = xn(q,A) be the unique positive root of the equation

qFn(A, x) = 1. (3.4)

Then, taking
c = β(A)− xn(q,A)− ε (ε > 0),

we have
qMn(A, c) = qFn(A, β(A)− c) < qFn(A, xn) = 1.

Now Corollary 3.2 implies

β(Ã) > β(A)− xn(q, A)− ε.

Hence, letting ε→ 0, we obtain

β(Ã) ≥ β(A)− xn(q, A). (3.5)

Similarly, taking
b = xn(q,A) + α(A) + ε,

we have
qM̂n(A, b) = qFn(A, b− α(A)) < qFn(A, xn) = 1.

Now Corollary 3.2 implies α(Ã) < α(A) + xn(q,A) + ε. Hence,

α(Ã) ≤ α(A) + xn(q, A). (3.6)

We thus have proved the following theorem.

Theorem 3.3. Let A, Ã ∈ Cn×n and let xn(q, A) be the unique positive root of the
equation (3.4). Then inequalities (3.5) and (3.6) are valid.



402 Michael Gil’

If g(A) = 0, then with 00 = 1 we can write Fn(A, x) = 1
x and thus

xn(q, A) = q. The following lemma gives us an estimate for xn(q, A) in the case
g(A) 6= 0.
Lemma 3.4. Let A ∈ Cn×n and with the notation

η(A) :=
n−1∑

j,k=0

gj+k(A)(k + j)!
2j+k(j! k!)3/2 ,

let
qη(A) ≤ 1. (3.7)

Then
xn(q, A) ≤ 2n

√
qη(A).

Proof. In this proof for the brevity put xn(q, A) = x0 and Fn(A, x) = F (x). Then
by (3.7) we have

qF (x0) = 1 ≥ qF (1) = qη(A).
Since F monotonically decreases, hence it follows that x0 ≤ 1. Multiplying equation
(3.4) by x2n

0 we have

x2n
0 = q

n−1∑

j,k=0

gj+k(A)x2n−j−k−1
0 (k + j)!

2j+k(j! k!)3/2 ≤ qη(A).

This proves the lemma.

About other estimates for the roots of polynomials see for instance the classical
book [21] and the references, which are given therein.

Theorem 3.3 and the latter lemma imply the following result.
Corollary 3.5. Let A, Ã ∈ Cn×n and condition (3.7) hold. Then

α(Ã) ≤ α(A) + 2n
√
qη(A)

and
β(Ã) ≥ β(A)− 2n

√
qη(A).

4. SPECTRAL STRIPS OF MATRICES “CLOSE” TO TRIANGULAR ONES

Let V+ and V− be the strictly upper and lower triangular parts of a matrix

A = (ajk)nj,k=1,

respectively, i.e.,

V+ =




0 a12 . . . a1n
0 0 . . . a2n
. . . . . .
0 0 . . . 0


 , V− =




0 . . . 0 0
a21 . . . 0 0
. . . . .
an1 . . . an,n−1 0


 .
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In addition, put
D = diag (a11, a22, . . . , ann),

and A+ = D + V+. So
A = A+ + V− = D + V+ + V−.

We are going to apply the results of the previous section with A = A+ and Ã = A.
Since the eigenvalues of triangular matrices are the diagonal entries, the obtained
results give us bounds for the spectral strip of A.

It is clear that
α(A+) = α(D) = max

k=1,...,n
Re akk

and
β(A+) = β(D) = min

k=1,...,n
Re akk.

In addition, ‖A−A+‖ = ‖V−‖ and g(A+) = N2(V+), cf. [15, Lemma 3.1].
Thus, for all ĉ < β(D) and b̂ > α(D) we have

Mn(A+, ĉ) :=
n−1∑

j,k=0

N j+k
2 (V+)(k + j)!

2j+k(β(D)− ĉ)j+k+1(j! k!)3/2 ,

and

M̂n(A+, b̂) :=
n−1∑

j,k=0

N j+k
2 (V+)(k + j)!

2j+k(b̂− α(D))j+k+1(j! k!)3/2
.

Now Corollary 3.2 implies the following result.

Corollary 4.1. Let A ∈ Cn×n. Then the condition

‖V−‖M̂n(A+, b̂) < 1

implies α(A) ≤ b̂, and the condition

‖V−‖Mn(A+, ĉ) < 1

implies β(A) ≥ ĉ.
Furthermore, we have

η(A+) :=
n−1∑

j,k=0

N j+k
2 (V+)(k + j)!
2j+k(j! k!)3/2 .

Therefore condition (3.7) with A = A+ takes the form ‖V−‖η(A+) ≤ 1. Under this
condition by Lemma 3.4 we obtain

xn(‖V−‖, A+) ≤ 2n
√
‖V−‖η(A+).

Hence, making use of Corollary 3.5, we arrive at the following result.
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Corollary 4.2. Let A ∈ Cn×n and the condition ‖V−‖η(A+) ≤ 1 hold. Then

α(A) ≤ α(D) + 2n
√
‖V−‖η(A+)

and
β(A) ≥ β(D)− 2n

√
‖V−‖η(A+).

5. OPERATORS WITH HILBERT–SCHMIDT HERMITIAN COMPONENTS

In this section we obtain estimates for Jc(A) and Ĵb(A) (A ∈ B(H)), assuming that

AI = (A−A∗)/(2i) is a Hilbert–Schmidt operator, (5.1)

i.e.
N2(AI) := (trace (A2

I))1/2 <∞.

Numerous integral operators satisfy this condition. We introduce the quantity

gI(A) :=
[

2N2
2 (AI)− 2

∞∑

k=1
|Im λk(A)|2

]1/2

≤
√

2N2(AI),

where λk(A) (k = 1, 2, . . .) are the eigenvalues of A taken with their multiplicities and
ordered as |Im λk+1(A)| ≤ |Im λk(A)| (k = 1, 2, . . .). If A is normal, then gI(A) = 0,
cf. [15, Lemma 9.3].

Lemma 5.1. Let condition (5.1) hold. Then

Jc(A) ≤MI(A, c) and Ĵb(A) ≤ M̂I(A, b),

where

MI(A, c) :=
∞∑

j,k=0

gj+kI (A)(k + j)!
2j+k(β(A)− c)j+k+1(j! k!)3/2

and

M̂I(A, b) :=
∞∑

j,k=0

gj+kI (A)(k + j)!
2j+k(b− α(A))j+k+1(j! k!)3/2 .

Proof. By Theorem 10.1 from [15] for any B ∈ B(H) with the property:
BI = (B −B∗)/(2i) is a Hilbert–Schmidt operator, we have

‖eBt‖ ≤ exp[α(B)t]
∞∑

k=0

gkI (B)tk
(k!)3/2 (t ≥ 0). (5.2)
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Since α(−A) = −β(A), hence it follows

Jc(A) ≤ 2
∞∫

0

e2(c−β(A))t

( ∞∑

k=0

gkI (A)tk
(k!)3/2

)2

dt

= 2
∞∫

0

exp[2(c− β(A))t]



∞∑

j,k=0

gk+j
I (A)tk+j

(j!k!)3/2


 dt

=
∞∑

j,k=0

2(k + j)!gj+kI (A)
(2(β(A)− c))j+k+1(j! k!)3/2 .

So we have proved that Jc(A) ≤MI(A, c).
Similarly, due to (5.2),

Ĵb(A) ≤ 2
∞∫

0

exp[2(−b+ α(A))t]
( ∞∑

k=0

gkI (A)tk
(k!)3/2

)2

dt

= 2
∞∫

0

exp[2(−b+ α(A))t]



∞∑

j,k=0

gk+j
I (A)tk+j

(j!k!)3/2


 dt

=
∞∑

j,k=0

2(k + j)!gj+kI (A)
(2(b− α(A))j+k+1(j! k!)3/2 ,

and thus, the inequality Ĵb(A) ≤ M̂I(A, b) is also valid, as claimed.

If A is normal, then gI(A) = 0 and with 00 = 1 we have

MI(A, c) = 1
β(A)− c and M̂I(A, b) = 1

b− α(A) .

The latter lemma and Theorem 1.1 imply the following corollary.
Corollary 5.2. Let condition (5.1) hold. Then the inequality qMI(A, c) < 1 implies
β(Ã) ≥ c, and the inequality qM̂I(A, b) < 1 implies α(Ã) ≤ b.

Furthermore, put

G(A, x) :=
∞∑

j,k=0

gj+kI (A)(k + j)!
2j+kxj+k+1(j! k!)3/2 (x > 0).

Then we can write

MI(A, c) = G(A, β(A)− c) and M̂I(A, b) = G(A, b− α(A)).

Let y0 be the unique positive root of the equation

qG(A, x) = 1. (5.3)
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Taking b = y0 + α(A) + ε, we have

qM̂I(A, b) = qG(A, b− α(A)) < qG(A, y0) = 1.

Now Corollary 5.2 implies
α(Ã) ≤ y0 + α(A) + ε.

Similarly, taking c = β(A)− y0 − ε, we have

qMI(A, c) = qG(A, β(A)− c) < qG(A, y0) = 1.

Due to Corollary 5.2, β(Ã) ≥ β(A)− y0 − ε. Since ε > 0 is arbitrary, we arrive at our
next result.

Theorem 5.3. Let the condition (5.1) hold and y0 be the unique positive root of
equation (5.3). Then β(Ã) ≥ β(A)− y0 and α(Ã) ≤ α(A) + y0.

If gI(A) = 0, then with 00 = 1 we can write G(A, x) = 1
x and thus y0 = q.

The following lemma gives us an estimate for y0 in the case gI(A) 6= 0.

Lemma 5.4. Let
q ≤ √egI(A). (5.4)

Then
y0 ≤ ζ(q, gI(A)),

where
ζ(a, d) := 2d

[ln (
√
ed/a)]1/2 (a, d > 0).

Proof. Since

2n =
n∑

k=0

n!
(n− k)! k! (n = 2, 3, . . .),

we have
2n ≥ n!

(n− k)! k! and 2j+k ≥ (j + k)!
j! k! .

Thus
G(A, x) ≤

∞∑

j,k=0

gj+kI (A)
xj+k+1(j! k!)1/2 = 1

x
H2(A, x) (x > 0),

where
H(A, x) :=

∞∑

j=0

gjI(A)
xj(j!)1/2 (x > 0).

By the Schwarz inequality,

H2(A, x) =



∞∑

j=0

(
√

2)jgjI(A)
(
√

2)jxj(j!)1/2




2

≤
∞∑

j=0

1
2j
∞∑

j=0

2jg2j
I (A)
x2jj! = 2 exp

[
2g2
I (A)
x2

]
.
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Thus y0 ≤ y, where y is is the unique positive root of the equation

1 = 2q
x

exp
[

2g2
I (A)
x2

]
.

Or

1 = 4q2

x2 exp
[

4g2
I (A)
x2

]
.

With

w = 4g2
I (A)
y2 ,

we obtain

1 = q2

g2
I (A)we

w.

It is simple to check that we−w ≤ e−1, and thus w ≤ ew−1 (w > 0). Therefore,

1 ≤ q2

g2
I (A)e

2w−1 = q2

eg2
I (A)e

2w

and
1
2 ln

[
eg2
I (A)
q2

]
≤ w,

provided
√
egI(A) ≥ q. Hence

4g2
I (A)
y2 ≥ 1

2 ln
[
eg2
I (A)
q2

]
.

This implies

y2
0 ≤ y2 ≤ 8g2

I (A)/
(

ln
[
eg2
I (A)
q2

])
= 4g2

I (A)/
[
ln (
√
egI/q)

]
= ζ2(q, gI(A)),

as claimed.
Theorem 5.3 and the latter lemma imply the following corollary.

Corollary 5.5. Let the conditions (5.1) and (5.4) hold. Then the inequalities

α(Ã) ≤ α(A) + ζ(q, gI(A)) and β(Ã) ≥ β(A)− ζ(q, gI(A))

are valid.
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6. INTEGRAL OPERATORS

Let L2 = L2(0, 1) be the complex space of scalar functions h defined on [0, 1] and
equipped with the norm

‖h‖ =




1∫

0

|h(x)|2dx




1/2

.

Let Ã be the operator defined in L2(0, 1) by

(Ãh)(x) = a(x)h(x) +
1∫

0

k(x, s)h(s)ds (h ∈ L2, x ∈ [0, 1]), (6.1)

where a(x) is a real bounded measurable function and k(x, s) is a complex kernel
defined on 0 ≤ x, s ≤ 1, and

1∫

0

1∫

0

|k(x, s)|2ds dx <∞. (6.2)

So the Volterra operator V defined by

(V h)(x) =
1∫

x

k(x, s)h(s)ds (h ∈ L2, x ∈ [0, 1]),

is a Hilbert–Schmidt one. Define operator A by

(Ah)(x) = a(x)h(x) +
1∫

x

k(x, s)h(s)ds (h ∈ L2, x ∈ [0, 1]).

Then A = D + V, where D is defined by (Dh)(x) = a(x)h(x). Due to [16, Lemma 7.1]
and [16, Corollary 3.5] we have σ(A) = σ(D). So σ(A) is real and

β(A) = ainf := inf
x
a(x) and α(A) = asup := sup

x
a(x).

Moreover,

N2(AI) = N2(VI) ≤ N2(V ) =




1∫

0

1∫

x

|k(x, s)|2ds dx




1/2

.

Here VI = (V − V ∗)/(2i). Thus,

gI(A) ≤
√

2N2(V ).



Spectrum localization of a perturbed operator in a strip and applications 409

Note also, that

q = ‖A− Ã‖ ≤




1∫

0

x∫

0

|k(x, s)|2ds dx




1/2

.

Making use of Corollary 5.5, we arrive at

Corollary 6.1. Let Ã be defined by (6.1) and let the conditions (6.2) and

q ≤
√

2eN2(V )

hold. Then the inequalities

α(Ã) ≤ asup + ζ(q,
√

2N2(V ))

and
β(Ã) ≥ ainf − ζ(q,

√
2N2(V ))

are valid.

The recent results on the spectral properties of integral operators can be found,
for instance, in the papers [7, 9, 10,12].

7. APPROXIMATION OF THE SPECTRAL STRIP OF
A COMPACT OPERATOR
BY THE SPECTRAL STRIPS OF FINITE MATRICES

Let {dk} be an orthonormal basis in H and let A be a Hilbert–Schmidt operator rep-
resented in that basis by the infinite matrix A = (ajk)∞j,k=1. Introduce the projections

Pn =
n∑

k=1
(·, dk)dk (n = 1, 2, . . .).

We will approximate the spectral strip of A by the spectral strips of the opera-
tors An = PnAPn (n = 1, 2, . . .). An is representable in the mentioned basis by
the matrix An = (ajk)nj,k=1, Put Bn = An + Cn, where

Cn =
∞∑

k=n+1
∆PkA∆Pk =

∞∑

k=n+1
akk∆Pk (∆Pk = Pk − Pk−1;P0 = 0),

i.e., Cn is representable in (I − Pn)H by the diagonal matrix diag (akk)∞k=n+1.
Since An and Cn act in the mutually orthogonal subspaces, one has

AnCn = CnAn = 0, and
σ(Bn) = σ(An) ∪ σ(Cn).
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Thus
α(Bn) = max{α(An), α(Cn)} = max

{
α(An), sup

k>n
Re akk

}

and
β(Bn) = min{β(An), β(Cn)} = min

{
β(An), inf

k>n
Re akk

}
.

In addition, gI(Bn) = gI(An) + gI(Cn). But gI(Cn) = 0, since Cn is normal. Thus,

gI(Bn) = gI(An) ≤
√

2N2(Im An) (Im An = (An −A∗n)/(2i)).

Put
νn = ‖A−Bn‖.

Since A is a Hilbert–Schmidt operator, we have Bn → A as n → ∞ in the
Hilbert–Schmidt norm, and therefore, νn → 0.

Now we can directly apply the results of Section 5 with A = Bn, Ã = A,
gI(Bn) = gI(An) and q = νn. In particular, for real constants ĉ < β(Bn) and
b̂ > α(Bn), omitting simple calculations, we can write

MI(Bn, ĉ) =
∞∑

j,k=0

gj+kI (An)(k + j)!
2j+k(β(Bn)− ĉ)j+k+1(j! k!)3/2

and

M̂I(Bn, b̂) =
∞∑

j,k=0

gj+kI (An)(k + j)!
2j+k(b̂− α(Bn))j+k+1(j! k!)3/2

.

Now Corollary 5.2 implies the following result.

Corollary 7.1. Let A be a Hilbert–Schmidt operator, represented in an orthogonal
basis by matrix A = (ajk)∞j,k=1 and let An = (ajk)nj,k=1. Assume that νnMI(Bn, ĉ) < 1.
Then β(A) ≥ ĉ. If, in addition, νnM̂I(Bn, b̂) < 1, then α(A) ≤ b̂.

Since νn → 0 and ann → 0 as n → ∞, Corollary 7.1 gives us approximations
of α(A) and β(A) by α(An) and β(An), respectively. About the recent results on
spectral approximations of operators, for instance see the papers [13,14,19,20] and
the references given therein.
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