PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of hydrodynamic power losses in a gearing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite the relatively numerous experimental studies, there are few published works on the topic of development of mathemati-cal models that describe the hydrodynamic processes in gears. There is no generic analytical model that integrates all types of losses. The purpose of this work is to develop a modern generalised methodology for calculating the hydrodynamic power losses of high-speed gears. For each gear, partially or fully immersed into an oil bath, the power spent to overcome the hydromechanical resistance can be represented as the sum of the following: the Coriolis force moment arising from the radial movement of the oil in the tooth spaces of the rotating gear, the viscous friction forces moment on the periphery of the gear addendums in the oil bath and the viscous friction forces moment at the face of the gear in the oil bath. The hydrodynamic power losses due to the Coriolis force action, viscosity friction losses at the periphery of the gear and the viscosity friction at the face of the gear (both turbulent and laminar modes) were observed separately. From the mathematical simulation of the rotation processes when the gear is immersed into the oil bath, an analytical dependence was obtained. It allows predicting the influence of the geometrical parameters of the gearing on the hydrodynamic power losses. Analysis of the calculation results of the power losses due to the action of hydraulic resistance forces and results from experimental studies is provided for several gears with different hydromechanical parameters. The proposed method of calculating power loss due to hydromechanical resistance of the oil bath to the rotation of the gear gave results that were close to the experimental data. Acceptable coincidence of theoretical and experimental results allows recommending the received analytical dependencies for practical calculations of high-speed gears.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 46 poz., tab., wykr.
Twórcy
  • Educational and Scientific Institute of Transport and Building, Volodymyr Dahl East Ukrainian National University, Tsentralnyi ave., 59-а, 93400, Severodonetsk, Ukraine
  • Department of Applied Mechanics and Materials Engineering, Aerospace Faculty, National Aviation University, Lubomyr Husar ave., 1, 03058, Kyiv, Ukraine
autor
  • Department of Applied Mechanics and Materials Engineering, Aerospace Faculty, National Aviation University, Lubomyr Husar ave., 1, 03058, Kyiv, Ukraine
  • Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska st., 45C, Bialystok, 15-351, Poland
Bibliografia
  • 1. Ahsan SN, Aureli M. Minimization of Hydrodynamic Power Losses in Oscillating Submerged Structures by a Novel Shape-Morphing Strat-egy. Volume 2: Mechatronics; Mechatronics and Controls in Ad-vanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vi-bration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Ro-bustness; Unmanned, Ground and Surface Robotics; Vehicle Dy-namic Controls; Vehicle Dynamics and Traffic Control. 2016; 2: 12-14.
  • 2. Akin LS, Mross JJ. Theory for the Effect of Windage on the Lubricant Flow in the Tooth Spaces of Spur Gears. Journal of Engineering for Industry. 1975;97(4):1266-1272.
  • 3. Amani A, Spitas C, Spitas V. Generalised non-dimensional multi-parametric involute spur gear design model considering manufactur-ability and geometrical compatibility. Mechanism and Machine Theo-ry. 2017;109:250-277.
  • 4. Barone S. Gear Geometric Design by B-Spline Curve Fitting and Sweep Surface Modelling. Engineering with Computers. 2001;17(1):66-74.
  • 5. Blok H. Hydrodynamic effects on friction in rolling with slippage. Biolwelle Joseph B. Rolling contact phenomena. Amsterdam: Else-vier; 1962.
  • 6. Bolotovskiy I, Gurev B, Smirnov V, Shenderey B. Cylindrical involute gears in external gearing . Moskva: Mashinostroenie (in Russian); 1974.
  • 7. Changenet C, Velex P. A Model for the Prediction of Churning Loss-es in Geared Transmissions—Preliminary Results. Journal of Me-chanical Design. 2006;129(1):128-33.
  • 8. Changenet C, Velex P. Housing Influence on Churning Losses in Geared Transmissions. Journal of Mechanical Design. 2008;130(6).
  • 9. Changenet C, Oviedo-Marlot X, Velex P. Power Loss Predictions in Geared Transmissions Using Thermal Networks-Applications to a Six-Speed Manual Gearbox. Journal of Mechanical Design. 2005;128(3):618-625.
  • 10. Chen C-F, Tsay C-B. Tooth profile design for the manufacture of helical gear sets with small numbers of teeth. International Journal of Machine Tools and Manufacture. 2005;45(12):1531-1541.
  • 11. Chen G, Li H, Liu Y. Double-arc harmonic gear profile design and meshing analysis for multi-section conjugation. Advances in Mechan-ical Engineering. 2019;11(5):168781401985065.
  • 12. Chen H, Zhang X, Cai X, Ju Z, Qu C, Shi D. Computerized design, generation and simulation of meshing and contact of hyperboloidal-type normal circular-arc gears. Mechanism and Machine Theory. 2016;96:127-145.
  • 13. Concli F, Gorla C. Analysis of the Oil Squeezing Power Losses of a Spur Gear Pair by Mean of CFD Simulations. Volume 2: Applied Flu-id Mechanics; Electromechanical Systems and Mechatronics; Ad-vanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering. 2012: 1-8.
  • 14. Daily JW, Nece RE. Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks. Journal of Basic Engineering. 1960;82(1):217-230.
  • 15. Dawson PH. Windage Loss in Larger High-Speed Gears. Proceed-ings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering. 1984;198(1):51-59.
  • 16. Dawson P. High speed gear windage GEC Review. GEC Review. 1988;43(3):164-167.
  • 17. Sheng W, Li Z, Zhang H, Zhu R. Geometry and design of spur gear drive associated with low sliding ratio. Advances in Mechanical Engi-neering. 2021;13(4):168781402110125.
  • 18. Franulovic M, Markovic K, Vrcan Z, Soban M. Experimental and analytical investigation of the influence of pitch deviations on the loading capacity of HCR spur gears. Mechanism and Machine Theo-ry. 2017;117:96-113.
  • 19. Heingartner P, Mba D. Determination power losses in the helical gear mesh. Gear technology. 2005;22(5):32-37.
  • 20. Hlebanja G. S-Gears for Wind Power Turbine Operating Conditions. Machine Design. 2012;4(3):123-130.
  • 21. Gao Q, Ye J, Liu C. Design and modeling of noncircular gear with curvature radius function. Journal of Computational Methods in Sci-ences and Engineering. 2018;18(3):683-689.
  • 22. Ioselevich G.B. Machine parts. Moskva: Mashinostroenie (in Rus-sian); 1988.
  • 23. Kapelevich A. Geometry and design of involute spur gears with asymmetric teeth. Mechanism and Machine Theory. 2000;35(1):117-130.
  • 24. Karpov O, Nosko P, Fil P, Nosko O, Olofsson U. Prevention of reso-nance oscillations in gear mechanisms using non-circular gears. Mechanism and Machine Theory. 2017;114:1-10.
  • 25. Senthil Kumar V, Muni D, Muthuveerappan G. Optimization of asymmetric spur gear drives to improve the bending load capacity. Mechanism and Machine Theory. 2008;43(7):829-858.
  • 26. Lechner G, Naunheimer H. Automotive Transmissions-Fundamentals, Selection, Design and Application. 1st ed. Berlin: Springer; 1999.
  • 27. Litvin F. Gear theory. Moskva: Nauka (in Russian); 1968.
  • 28. Litvin F, Lu J. Computerized simulation of generation, meshing and contact of double circular-arc helical gears. Mathematical and Com-puter Modelling. 1993;18(5):31-47.
  • 29. Litvin F, Lu J. Computerized design and generation of double circu-lar-arc helical gears with low transmission errors. Computer Methods in Applied Mechanics and Engineering. 1995;127(1):57-86.
  • 30. Litvin FL, Fuentes A, Zanzi C, Pontiggia M. Design, generation, and stress analysis of two versions of geometry of face-gear drives. Mechanism and Machine Theory. 2002;37(10):1179-1211.
  • 31. Mann RW, Marston CH. Friction Drag on Bladed Disks in Housings as a Function of Reynolds Number, Axial and Radial Clearance, and Blade Aspect Ratio and Solidity. Journal of Basic Engineering. 1961;83(4):719-723.
  • 32. Niemann G, Winter H. Maschinenelemente. 2nd ed. Berlin (in Ger-man): Springer; 2003. (Band 2: Getriebeallgemein, Zahnradgetriebe – Grundlagen, Stirnradgetriebe).
  • 33. Pechersky M. An analysis of fluid flow between meshing spur gear teeth. MS thesis, Pennsylvania State University, State College, PA. 1987.
  • 34. Polly J, Talbot D, Kahraman A, Singh A, Xu H. An Experimental Investigation of Churning Power Losses of a Gearbox. Journal of Tri-bology. 2018;140(3): 031102.
  • 35. Reshetov D. Detali mashin. Moskva: Mashinostroenie (in Russian).; 1989.
  • 36. Seetharaman S, Kahraman A, Moorhead MD, Petry-Johnson TT. Oil Churning Power Losses of a Gear Pair: Experiments and Model Vali-dation. Journal of Tribology. 2009;131(2):1-9.
  • 37. Shishov V, Pankratov D, Muhovatyiy O. The evaluation criteria of efficiency gearing transmission. Visnik NTU KHPI (in Russian). 2001;12:27-33.
  • 38. Stavitskiy V, Nosko P. Opredeleniye mekhanicheskogo kpd v zub-chatom zatseplenii s uchetom usloviy ekspluatatsii. Vestnik NTU «KHPI» (in Russian). 2011;51:152-164.
  • 39. Stavitskiy V, Nosko P. Opredeleniye koeffitsiyenta poter’ moshchnos-ti vsledstviye szhatiya maslovozdushnoy smesi mezhdu zub’yami tsilindricheskikh peredach. Vísnik Skhídnoukr. nats. u-tu ím. V. Dalya (in Russian). 2011;5(2):313-318.
  • 40. Stavitskiy V, Nosko P. Gidrodinamicheskoye soprotivleniye v vyso-koskorostnykh zubchatykh peredachakh, Progresivní tekhnologíí í sistemi mashinobuduvannya. Mízhnarodniy zb. naukovikh prats’ (in Russian). 2012;43:278-85.
  • 41. Stavitskiy V, Nosko P, Likhodeyev S. Analiz sostavlyayushchikh poter’ moshchnosti vsledstviye aerodinamicheskogo soprotivleniya vrashcheniyu zubchatykh koles, Progresivní tekhnologíí í sistemi mashinobuduvannya. Mízhnar. zb. naukovikh prats’ (in Russian). 2011;41:297-302.
  • 42. Stavitskiy V, Nosko P, Fil P. Energeticheskaya effektivnost’ vyso-koskorostnyh zubchatyh peredach. Luhansk: vydavnytstvo SNU im. Dalia (in Russian); 2013.
  • 43. Tkach P, Nosko P, Boyko G, Bashta O, Bashta A. Design of worm gears with optimal geometric parameters based on minimization of losses in gearing. Problems of Friction and Wear. 2018;1(78):75-84.
  • 44. Tkach P, Nosko P, Bashta O, Boyko G, Tsybrii I, Gerasimova O. Gearing with increased teeth wear resistance. Problems of Friction and Wear. 2018;2(79):86-92.
  • 45. Zhuravlev G. Evaluation of the Hertz solution applicability in prob-lems of the gears teeth contact. Mezhdunar. konf. Tehn. Mashi-nostroeniya (in Russian). 2001.
  • 46. Zhou X, Walker P, Zhang N, Zhu B, Ruan J. Study of Power Losses in a Two-Speed Dual Clutch Transmission. SAE Technical Paper Se-ries. 2014:1799.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-311aa63a-b8f0-4e5f-af63-55a6406e9b4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.