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Abstract: Despite the relatively numerous experimental studies, there are few published works on the topic of development of mathemati-
cal models that describe the hydrodynamic processes in gears. There is no generic analytical model that integrates all types of losses.  
The purpose of this work is to develop a modern generalised methodology for calculating the hydrodynamic power losses of high-speed 
gears. For  each gear, partially or fully immersed into an oil bath, the power spent to overcome the hydromechanical resistance can be  
represented as the sum of the following: the Coriolis force moment arising from the radial movement of the oil in the tooth spaces of the  
rotating gear, the viscous friction forces moment on the periphery of the gear addendums in the oil bath and the viscous friction forces 
moment at the face of the gear in the oil bath. The hydrodynamic power losses due to the Coriolis force action, viscosity friction losses at 
the periphery of the gear and the viscosity friction at the face of the gear (both turbulent and laminar modes) were observed separately. 
From the mathematical simulation of the rotation processes when the gear is immersed into the oil bath, an analytical dependence was  
obtained. It allows predicting the influence of the geometrical parameters of the gearing on the hydrodynamic power losses. Analysis of the 
calculation results of the power losses due to the action of hydraulic resistance forces and results from experimental studies is provided  
for several gears with different hydromechanical parameters. The proposed method of  calculating power loss due to hydromechanical   
resistance of the oil bath to the rotation of the gear gave results that were close to the experimental data. Acceptable coincidence             
of theoretical and experimental results allows recommending the received analytical dependencies for practical calculations of high-speed 
gears. 
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1. INTRODUCTION  

The current state of research on gear trains can be said to be 
evolving in several directions. One of them is development of the 
geometry of new gearings based on the classic geometric and 
kinematic theories of gearing developed by, for instance, Bolotov-
skiy, 1974 [6] and Litvin, 1968 [27]–[29] and expanded by, for 
instance, Shishov, 2001 [37], Karpov, 2017 [24], Tkach, 2018 [43, 
44] and Franulovic et al., 2017 [18]. Besides, Hlebanja, 2012 [20] 
proposed an alternative S-gear tooth geometry, which improves 
the contact circumstances by lowering the contact pressure, which 
consequently enables the thickening of the oil film, diminishes the 
amount of sliding and thus lowers friction. Kapelevich, 2000 [23] 
presented a method of research and design of gears with asym-
metric teeth that enables increases in the load capacity and re-
duction of the weight, size and vibration level. Litvin 2002 [30] 
investigated and compared two versions of face-gear drives 
based on the application of a spur pinion of two versions of geom-
etry and conjugated face gear. The following advantages were 
obtained with the new version of geometry: (i) longitudinal orienta-
tion of bearing contact, which enables avoidance of the edge 
contact; and (ii) reduction of contact stresses.  

The other direction is the study of the stressed state of gear 
teeth to develop the most reliable analysis of the strength (Resh-

etov, 1989 [35]; Ioselevich, 1988 [22], Litvin, 2002 [30]), for in-
stance. Senthil Kumar, et al., 2008 [25] presented the optimisation 
of the asymmetric spur gear drive, which was carried out by using 
an iterative procedure on the calculated maximum fillet stresses 
through finite element method (FEM) for different rack cutter 
offsets, and finally, the optimum values of rack cutter offsets are 
suggested for the given centre distance and the speed ratio of the 
asymmetric gear drive.  

One more direction of gear train research is improvement of 
the existing synthesis techniques of gear drives by designing 
gearings on the basis of optimisation models (Chen et al., 2016 
[12], Zhuravlev, 2001 [45], Chen et al., 2019 [11], Fong et al., 
2002 [17] and Gao et al., 2002 [21]) and B-spline curves, interpo-
lating a number of discrete points on involute profiles. In this case, 
tooth surfaces are modelled by sweeping the B-spline profiles 
along user-defined trajectories (Barone, 2001 [4]). Besides, a 
mathematical model of the helical spur gear under condition of 
gear non-undercutting, as well as the software to generate the 
complete geometry of a gear, including the involute tooth surfac-
es, the modified root fillets and the modified tip fillets, has been 
developed by Chen and Tsay [10], using experimental studies of 
the teeth tense state in order to refine the existing calculation 
methods. 

Amania et al., 2017 [3] performed an independent investiga-
tion of tip pointing and undercutting conditions. A non-dimensional 
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methodology was introduced, and the order of the multi-
parametric problem was reduced. This model took into account all 
applicable geometric and kinematical conditions and constraints to 
qualify each point in the design space (hence each combination of 
geometrical gear design parameters) in terms of manufacturability 
and geometrical compatibility. 

Increase in transmitted capacities and speeds causes consid-
erable energy dissipation and, as a consequence, an increase in 
the temperature in a gearing. This impairs the mechanical charac-
teristics of gear drive parts and reduces their service life. As a 
generalised criterion of the effectiveness of high-speed gear drive, 
the efficiency of a gearing can be considered, taking into account 
the conditions and modes of operation, materials and manufactur-
ing process, transmitted load and peripheral speed. 

Power losses can be conditionally divided (Niemann, 2003 
[32]) into those that depend on the transmitted load (mechanical 
friction in a gearing and bearings) and those that are independent 
of the load (aero-hydrodynamic resistance, periodic compression 
and expansion between teeth) (Changenet, 2006 [9], 2007 [7], 
2008 [8], Seetharaman et al., 2009 [36], Zhouet al., 2014 [46], 
Polly et al., 2017 [34]). An exhaustive study of different kinds of 
power loss distributions was conducted by Heingartner (2005) [19] 
and Lechner and Naunheimer [26]. 

In the study of hydrodynamic resistance while immersing 
gears into an oil bath, most authors have developed empirical 
equations to determine the dimensionless moment coefficient of 
hydrodynamic resistance (Mann, 1961 [31]) and considered a 
rotor, disc or gear immersed into the oil bath. In addition, Ahsan 
(2016) [1] investigated this phenomenon of hydrodynamic power 
dissipation in elastic systems (discs) oscillating in viscous fluids, 
which may provide a viable means for reducing energy losses. 

Based on the results of experiments, Daily et al., (1960) [14] 
proposed the consideration of four modes of flow around a disc 
that is completely immersed into a liquid. 

The phenomena occurring in the area between the teeth were 
considered by Akin et al. (1975) [1]. They proposed a vector 
model for estimating the depth of oil filling in rotating gear spaces 
and Concli (2012) expanded this idea [13]. 

Dawson, 1984 [15] proposed and, in 1988 [16], modified an 
approximate formula for determining power losses, obtained from 
the results of an experimental study of losses separately at the 
ends of a spur gear and at its periphery. 

Pechersky et al. (1987) [33] developed a numerical model for 
locking a certain volume of oil–air mixture between gear and 
pinion teeth addendum and dedendum in engagement. It was 
determined that the speed of the oil–air mixture in gears with a 
larger module is greater. 

The results of the Changenet experiment (2008) [8] showed 
that with the reduction in side clearance between a rotating gear 
and a fixed wall, the power losses are decreased due to hydrody-
namic resistance. It was also found that the relative reduction in 
power losses caused by the presence of the side clearance does 
not depend on the speed of gear rotation and its geometrical 
parameters. 

2. PROBLEM STATEMENT 

Despite the relatively numerous experimental studies, there 
are only few published works on the development of mathematical 
models that describe the hydrodynamic processes in gears. There 

is no generic analytical model that integrates all types of losses. 
The purpose of this work is to develop a modern generalised 

methodology for calculating hydrodynamic power losses of high-
speed gears. 

In order to determine the integral characteristics of energy 
dissipation due to aero-hydrodynamic resistance in analytical 
form, a simplified mathematical model based on the following 
assumptions is proposed. 

 aerodynamic drag in a gear tooth space is determined by the 
Coriolis force caused by the radial flow rate of the oil–air 
mixture during its rotation together with the toothed gear;  

 additional sources of energy dissipation include the viscous 
friction of the oil–air mixture on the working surfaces and 
heads of teeth, the face surfaces of the gear and inhibition of 
the flow of the mixture in the clearance between a gear and 
gearbox;  

 the radial speed of the oil–air mixture in the gear tooth spaces 
and the speed of rotation of a gear are constant;  

 transient modes of relative flow of oil–air mixture (either 
laminar or turbulent mode) are absent;  

 losses caused by bearings and sealings are relatively small 
and can be neglected. 

2.1. Mathematical simulation of power losses  
when immersing a gear in an oil bath 

Depending on the operating conditions, different methods of 
oil supply to parts and gear drive units are used. They are mainly 
lubrication by immersion into oil bath, spraying from the main oil 
bath and circulating-type oil supply. 

In the general case, when lubricating the gear by immersion 
into the oil bath, the gears are affected by actions such as the 
force of aerodynamic resistance and the force of hydrodynamic 
resistance.  

At a relative immersion depth hi =
hi

rai
≤ 0, the lubricating oil 

does not come into contact with the gear (circulating oil supply). 
The immersion depth hi ≥ 2 corresponds to the case of 

complete immersion of the gear into the oil bath. 

At a depth of hi = 2, the angle φi = π and the lubricating 
surface at the ends of the gear is Awash = 2 ∙ π ∙ rai ∙ bi. When 

hi ≤ 0, similar to the case of hi = 2,  we can consider that the 
wheel is completely immersed, but in air. The force of 
hydrodynamic resistance is converted into the force of 
aerodynamic resistance. 

The ratio of the aerodynamic and hydrodynamic resistance 
forces is determined by the oil level in the oil bath. 

Power losses due to the action of the Coriolis force are 
caused by the presence of radial velocity of the oil–air mixture in 
the spaces of rotating gear. They were validated on the basis of 
the results of mathematical modelling of processes in the spaces 
of a rapidly rotating gear [42] and also by the experiment of Akin 
and Mross [2], among others. 

For each gear, partially or fully immersed into the oil bath, the 
power spent to overcome the hydromechanical resistance can be 
represented as the sum of the following components: 

𝑀𝑎 = 𝑀𝑘 + 𝑀𝑣 + 𝑀𝑓         (1) 

where 𝑀𝑘 is the moment of the Coriolis force arising due to the 
radial movement of the oil in the tooth spaces of the rotating gear 
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in newton-metres; 𝑀𝑣 is the moment of viscous friction forces on 
the periphery of the gear addendums in the oil bath, in newton-
metres; 𝑀𝑓  is the moment of viscous friction forces at the gear 

face end in the oil bath, in newton-metres. 

3. THE PROBLEM SOLUTION 

3.1. Determination of hydrodynamic power losses  
due to Coriolis force action 

The Coriolis force Fk that acts on the working surface of one 
of the gear teeth is determined by the formula  

𝐹𝑘 =  𝑚𝑏𝑚 ⋅ 𝑎𝑘                               (2) 

where mbm =  
mbmax+ mbmin

2
 is the average mass of the oil in 

the gear tooth spaces, in kilograms; mbmax is the mass of the oil 
in the tooth spaces at the time of its exit from the oil bath, in kilo-
grams; mbmin is the mass of the oil in the tooth spaces at the 
time of beginning of the gear immersion into the oil bath, in kilo-
grams;  ak is the Coriolis acceleration that occurs due to the 
movement of the oil–air mixture in the tooth spaces in the radial 
direction of a rotating gear, in metres per square second. 

The Coriolis acceleration is determined by the formula 

𝑎𝑘 = 2 ⋅  𝜔𝑖
2 ⋅ 𝑟𝑖  ⋅ sin𝛼 ⋅ cos𝛽   (3) 

where β is the angle of the tooth line inclination, in radians; αi is 
the operating pressure angle at any point of the involute of radius 
ri; ωi is the angular velocity; ri is the radius to any point on the 
tooth profile curve. 

The average mass of the oil in a tooth space located in the oil 
bath can be determined by the following formula: 

𝑚𝑏𝑚 =  
𝑄

3 
⋅Δ𝑡

2
          (4) 

where Q3  is the mass consumption of the oil when filling the tooth 

spaces through the backlash area of the tooth immersed into the 

oil bath, in kilograms per second; Δt is the time period when a 
tooth space is in the oil bath, in seconds. 

Δ𝑡 =  
𝐴�̆�

𝜔𝑖
=

2⋅𝜙𝑖⋅𝑟𝑖

𝜔𝑖
=

2⋅𝑟𝑖⋅arccos(1−ℎ𝑖)

𝜔𝑖
 .                      (5) 

AČ is the arc length determined by the immersion depth of the 

gear in the oil bath;  hi  is the tooth height at any point of the 

tooth; φi is the angle of gear rotation in the process of meshing. 
Mass consumption of the oil while filling the tooth spaces in 

the case of its immersion into the oil bath Q3  depends on the end 

cross-sectional area of the tooth space, the actual speed of its 
filling with oil and the density of the oil: 

𝑄3 = 𝐴𝑎  ⋅ 𝜌𝑚 ⋅ 𝑉3                     (6) 

where ρm is the density of the lubricant at a specified temper-

ature of the oil bath, in kilograms per cubic metre;  Aa =

Sbn ⋅ ∑
2

i=1
yi is the cross-sectional area of the tooth spaces in 

the axial direction, in cubic metres; yi is the backlash coefficient 

obtained by the experiment; Sbn is the tooth cross-sectional area, 
in square metres; V3 is the actual velocity of the filling of the tooth 
spaces by the axial flow of oil when the gear is immersed into the 
oil bath, in metres per second. 

Then, 

𝑚𝑏𝑚 =
𝐴𝑎 ⋅𝜌𝑚⋅𝑉3⋅𝑟𝑖⋅arccos(1−ℎ𝑖)

𝜔𝑖
 .                     (7) 

The magnitude of the velocity of filling of the tooth spaces in 
the axial direction is determined by Bernoulli’s law:  

ρ𝑚 ∙  
𝑉3

2

2
=  𝑝𝑏 −  𝑝𝑗 −  𝑝𝑔 + 𝑝ℎ +  𝜌𝑚 ∙

𝑘0
2⋅𝑉𝜏

2

2
,                     (8) 

where pb is the oil pressure in the tooth spaces due to the action 

of the friction forces, in megapascals; pj is the oil pressure in the 

tooth spaces due to centrifugal forces, in megapascals; pg is the 

oil pressure in the tooth spaces due to the action of gravity, in 

megapascals; ph is the hydrostatic pressure in the tooth spaces, 

in megapascals; Vτ = ω ⋅ r ⋅ sinα ⋅ cosβ is the velocity of the oil 
flow, which is displaced by the tooth profile from the tooth spaces 

in the radial direction, in metres per second; ko  is the velocity 
coefficient, which depends on the shape of the oil flow from the 
tooth spaces of the gear. 

Equation (8) describes the processes occurring in the tooth 
spaces that are immersed into the oil bath: the oil is ejected from 
the tooth spaces by gravitational and centrifugal forces and held in 
the tooth spaces by viscous and hydrostatic forces. But some of 
the oil is emitted in the radial direction at velocity Vi, and arrives 

axially at velocity V3. 

If the relative addendum circle radius of the gear is Ra = ra ⋅
ri  and the relative dedendum circle radius Rb = rf ⋅ ri , we get 
the relative pressure of the oil centrifugal forces of inertia: 

𝑝𝑗 =
𝑝𝑗

𝜌𝑚⋅𝜔𝑖
2⋅𝑟𝑖

2 =
1

2
⋅ (𝑅𝑎

2 − 𝑅𝑏
2),                     (9) 

where ra is the tip fillet radius; rf is the root fillet radius. 
The area of the wetted surface is determined as 

𝐴𝑤𝑎𝑠ℎ = 𝑏 ⋅ 𝑟𝑖
2 ⋅ (tan2𝛼𝑎 − tan2𝛼𝑓) ⋅ cos𝛼.                    (10) 

Taking into account that the Reynolds number is Re =
ωi⋅ri

2

νm
, 

the relative oil pressure in the tooth spaces due to viscous friction 
forces is calculated as 

𝑝𝑏 =
𝑝𝑏

𝜌𝑚⋅𝜔𝑖
2⋅𝑟𝑖

2 =
𝑉𝜏

1.5⋅(tan2𝛼𝑎−tan2𝛼𝑓)⋅cos𝛼

𝜑𝑖
1.5⋅𝐴𝑖⋅√3⋅Re

            (11) 

where  

𝜙𝑖 = (
𝑉𝜏

𝜑𝑖
)

1.5

⋅
(tan2𝛼𝑎−tan2𝛼𝑓)⋅cos𝛼

𝑅𝑎⋅√3
=

= (
sin𝛼⋅cos𝛽

𝜑𝑖
)

1.5

×
(tan2𝛼𝑎−tan2𝛼𝑓)⋅cos𝛼

𝑅𝑎⋅√3 .   

The relative pressure of the gravitational forces is 

𝑝𝑔 =
(𝑅𝑎−𝑅𝑏)⋅𝑟𝑖⋅𝑔⋅𝜌𝑚

𝜌𝑚⋅𝜔𝑖
2⋅𝑟𝑖

2 =
(𝑅𝑎−𝑅𝑏)

𝐹𝑟
                       (12) 

where Fr =
ωi

2⋅ri

g
 is Froude’s number; g is the acceleration due to 

gravity. 
The relative hydrostatic pressure of the oil in the tooth spaces 

at the pitch circle is determined in the following way: 

𝑝ℎ =
𝑟𝑖⋅ℎ𝑖⋅𝑔⋅𝜌𝑚

𝜌𝑚⋅𝜔𝑖
2⋅𝑟𝑖

2 =
ℎ𝑖

𝐹𝑟
.                   (13) 

 Substituting Eqs (9) and (11–13) into Eq. (8), we obtain the 
Bernoulli equation in the dimensionless form: 
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𝑉3
2 = (𝑅𝑎

2 − 𝑅𝑏
2) +

2

𝐹𝑟
(ℎ𝑖 − 𝑅𝑎 − 𝑅𝑏) +

2Ф𝑖

√Re
  

+(𝑘𝑜 ⋅ sin𝛼 ⋅ cos𝛽)2 

The dimensionless filling velocity of the tooth spaces im-
mersed into the oil bath is 

𝑉3

𝜔𝑖⋅𝑟𝑖
= V3 = 𝑘𝑠 ×              (14) 

√(𝑅𝑎
2 − 𝑅𝑏

2) +
2

𝐹𝑟
(ℎ𝑖 − 𝑅𝑎 − 𝑅𝑏) +

2Ф𝑖

√Re
+ (𝑘𝑜 ⋅ sin𝛼 ⋅ cos𝛽)2  

where  ks  is the speed  coefficient of  the end face  section of 
the gear tooth spaces (ks = 0.85 for absolutely sharp edges of 

teeth, ks = 0.9 in the case of additional processing of edges of 
teeth). 

Then, we obtain 

𝑄3 =
(𝜋−4⋅𝑥⋅tan𝛼)

𝑧
⋅

𝑟𝑖
3⋅(𝑅𝑎

2−𝑅𝑏
2)

2
×

× ∑ 𝑦𝑖 ⋅ 𝜌𝑚 ⋅ 𝜔𝑖 ⋅ 𝑉3 ⋅ cos𝛽2
𝑖=1

        (15) 

and  

𝑚𝑏𝑚 =
ρ𝑚⋅r𝑖

3⋅(𝜋−4⋅𝑥⋅tan𝛼)⋅(𝑅𝑎
2−𝑅𝑏

2)

2⋅𝑧
×

×
∑ 𝑦𝑖⋅𝑉3⋅arccos(1−ℎ𝑖)⋅cos𝛽2

𝑖=1

2⋅𝑧
=

=
ρ𝑚⋅r𝑖

3⋅𝑚𝑏𝑚

2⋅𝑧

                   (16) 

where yi =
4⋅Rb⋅δi

(Ra
2−Rb

2 )
 is the coefficient of backlash area, which is 

considered as the ratio of the radial clearance area of one tooth to 
the area of the tooth spaces. 

The Coriolis force is  

𝐹𝑘 = 𝜌𝑚 ⋅ 𝑟𝑖
4 ⋅

𝑚𝑏𝑚

𝑧𝑖
⋅ 𝜔i

2 ⋅ sin𝛼 ⋅ cos𝛽            (17) 

The Coriolis force moment in the case where the gear is im-
mersed into the oil bath (torque of the resistance of gear) is: 

𝑀𝑘 =
arccos(1−ℎ𝑖)⋅𝑧𝑖

𝜋
⋅ 𝐹𝑘 ⋅ 𝑟𝑖; 

𝑀𝑘 =
ρ𝑚⋅𝜔𝑖

2⋅r𝑖
5

𝜋
⋅ (𝜋 − 4 ⋅ 𝑥 ⋅ tan𝛼) ⋅ (𝑅𝑎

2 − 𝑅𝑏
2) ×

× ∑ 𝑦𝑖 ⋅ 𝑉3 ⋅ arccos2(1 − ℎ𝑖) ⋅ sin𝛼 ⋅ cos2𝛽2
𝑖=1

.            (18) 

For a zero-toothed gear, expression (18) is partially simplified 
as  

𝑀𝑘 = ρ𝑚 ⋅ 𝜔𝑖
2 ⋅ r𝑖

5 ⋅ (𝑅𝑎
2 − 𝑅𝑏

2) ×

× ∑ 𝑦𝑖 ⋅ 𝑉3 ⋅ arccos2(1 − ℎ𝑖) ⋅ sin𝛼 ⋅ cos2𝛽2
𝑖=1

.                (19) 

When the zero-toothed gear is immersed into the oil bath, the 
dimensionless moment of the Coriolis force is 

𝐶𝑘 = 2 ⋅ (𝑅𝑎
2 − 𝑅𝑏

2) ⋅
(𝜋−4⋅𝑥⋅tan𝛼)

𝜋
×

× ∑ 𝑦𝑖 ⋅ 𝑉3 ⋅ arccos2(1 − ℎ𝑖) ⋅ sin𝛼 ⋅ cos2𝛽2
𝑖=1

.                (20) 

3.2. Determination of losses due to viscosity friction  
at the periphery of the toothed gear 

A gearing, partially or fully immersed into the oil bath, is sub-
ject to the forces of hydrodynamic friction, both on the periphery of 
the gear and on the lateral surfaces of gears.  

The boundary conditions for oil circulation along the periphery 

of the gear are Vout = ωi ⋅ rai  when r = rai ; and Vout = 0 

when r → ∞; where ωi  is the angular velocity of the gear and 

r ∈ (rai, ∞). Solving Eq. (19) with the given boundary conditions, 
we obtain the flow velocity at the periphery of the gear as 

𝑉𝑜𝑢𝑡 =
𝜔𝑖⋅𝑟𝑎𝑖

2

𝑟
.                 (21) 

Then, at a given dynamic viscosity, the radial, axial and tan-
gential components of the stress on the toothed gear periphery 
due to the gear rotation are determined as follows:  

𝜏𝑜𝑢𝑡 = 2 ⋅ 𝜇𝑚 ⋅
𝜕𝑉𝑜𝑢𝑡

𝑟

𝜕𝑟
= 0;                   (22) 

𝜏𝑜𝑢𝑡 = 2 ⋅ 𝜇𝑚 ⋅ (
1

𝑟

𝜕𝑉𝑜𝑢𝑡
𝜏

𝜕𝜏
+

𝑉𝑜𝑢𝑡
𝑟

𝑟
) = 0;                                   (23) 

𝜏𝑜𝑢𝑡 = 𝜇𝑚 ⋅ 𝑟 ⋅
𝜕

𝜕𝑟
(

𝑉𝑜𝑢𝑡
𝜏

𝑟
) +

1

𝑟
⋅

𝜕𝑉𝑜𝑢𝑡
𝑟

𝜕𝜏
= −

2 ⋅ 𝜇𝑚 ⋅ 𝜔𝑖 ⋅ 𝑟𝑎𝑖
2

𝑟2
.  

      (24) 

It can be seen from Eqs (22–24) that only the tangential com-
ponent of the stress at the gear periphery is not equal to zero. It 
follows from Eq. (24) that on the periphery of the toothed gear 

r = rai, the tangential stress is equal to τout = 2 ⋅ μm ⋅ ωi and 
the resistance force is equal to 

𝐹𝑜𝑢𝑡 = 𝐴𝑤𝑎𝑠ℎ ⋅ 𝜏𝑜𝑢𝑡 = 2 ⋅ 𝐴𝑤𝑎𝑠ℎ ⋅ 𝜇𝑚 ⋅ 𝜔𝑖,                (25) 

where Awash = 2 ⋅ ϕi ⋅ rai ⋅ bi  is the wetted surface area, in 
square metres. 

The ultimate torque of the hydrodynamic resistance on the pe-
riphery of a single gear is determined as follows:  

𝑀𝑜𝑢𝑡 = 𝐹𝑜𝑢𝑡 ⋅ 𝑟𝑎𝑖 = 4 ⋅ 𝜇𝑚 ⋅ 𝑏𝑖 ⋅ 𝑟𝑎𝑖
2 ⋅ 𝜔𝑖 ⋅ 𝜙𝑖;                (26) 

𝑀𝑜𝑢𝑡 =
4⋅𝜇𝑚⋅𝑅𝑎

2⋅𝑏𝑖⋅𝑟𝑎𝑖
5 ⋅𝜔𝑖

2⋅𝜙𝑖⋅𝜌𝑚

𝜌𝑚⋅𝜔𝑖
2⋅𝑟𝑖

2 =
4⋅𝑅𝑎

2⋅𝜌𝑚⋅𝑏𝑖⋅𝑟𝑎𝑖
5 ⋅𝜔𝑖

2⋅𝜙i
2

Re
. 

Substituting the angle ϕi = arccos(1 − hi), the dimension-
less torque of toothed gear rotation resistance due to viscosity 
friction at the tooth periphery equals 

𝐶𝑜𝑢𝑡 =
𝑀𝑜𝑢𝑡

𝜌𝑚⋅𝑟𝑖
5⋅𝜔𝑖

2 =
8⋅𝑅𝑎

3⋅𝑏𝑖⋅arccos(1−ℎ𝑖)

Re
.                (27) 

3.3. Determination of viscosity friction at the face end  
of the toothed gear 

The dimensional torque of hydraulic resistance due to viscous 
friction of oil under laminar flow conditions is 

𝐶𝑀
lam =

√𝜈𝑚

√3⋅𝑙∗⋅𝜔𝑖⋅𝑟𝑖
2

=
1

√3⋅𝑙∗⋅Re
=

=
1

√6⋅𝐴𝑖⋅√ℎ𝑖⋅(2−ℎ𝑖)⋅Re

,                (28) 

where 𝑙∗ = 2𝑟𝑎𝑖√ℎ𝑖(2 − ℎ𝑖) = 2𝐴𝑖𝑟𝑖 × √ℎ𝑖(2 − ℎ𝑖) is the 

characteristic linear size, in metres. 
The hydraulic resistance force due to friction of the oil at the 

face surface of the gear under laminar flow conditions is found as  

𝐹𝑇
𝑙𝑎𝑚 = 𝜌𝑚 ⋅ 𝐴𝑖

2 ⋅ 𝜔𝑖
2 ⋅ 𝑟𝑖

4 ×

×
[arccos(1−ℎ𝑖)−√ℎ𝑖⋅(2−ℎ𝑖)⋅(1−ℎ𝑖)]

√6⋅𝐴𝑖⋅√ℎ𝑖⋅(2−ℎ𝑖)⋅Re

.                (29) 

The torque of the hydraulic resistance due to the friction of the 
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oil at the face surface of the toothed gear under laminar flow 

conditions is defined as MT
lam = FT

lam ⋅ ri; 

𝑀𝑇
𝑙𝑎𝑚 = 𝜌𝑚 ⋅ 𝐴𝑖

2 ⋅ 𝜔𝑖
2 ⋅ 𝑟𝑖

5 ×

×
[arccos(1−ℎ𝑖)−√ℎ𝑖⋅(2−ℎ𝑖)⋅(1−ℎ𝑖)]

√6⋅𝐴𝑖⋅√ℎ𝑖⋅(2−ℎ𝑖)⋅Re

.        (30) 

The dimensionless torque of hydraulic resistance due to oil 
friction at the face surface of the toothed gear under laminar flow 
conditions is  

𝐶𝑇
𝑙𝑎𝑚 =

𝑀𝑇
𝑙𝑎𝑚

0.5⋅𝜌𝑚⋅𝜔𝑖
2⋅𝑟𝑖

5 =

=
2⋅𝐴i

2⋅[arccos(1−ℎ𝑖)−√ℎ𝑖⋅(2−ℎ𝑖)⋅(1−ℎ𝑖)]

√6⋅𝐴𝑖⋅√ℎ𝑖⋅(2−ℎ𝑖)⋅Re

.            (31) 

For turbulent flow mode, 

𝐶𝑀
𝑡𝑢𝑟𝑏 = 0.0276 ⋅ (

𝜈𝑚

𝑙⋅𝜔𝑖⋅𝑟𝑖
)

1

7
=

=
0.0276

√2⋅𝐴𝑖⋅√ℎ𝑖⋅(2−ℎ𝑖)⋅Re
7

.                (32) 

The hydraulic resistance due to friction of the oil at the face 
surface of the gear under turbulent flow conditions is determined 
similar to Eq. (29):  

𝐹𝑇
𝑡𝑢𝑟𝑏 = 0.5 ⋅ 𝜌𝑚 ⋅ 𝜔𝑖

2 ⋅ 𝑟𝑖
2 ⋅ 2 ⋅ 𝐴𝑤𝑎𝑠ℎ ⋅ 𝐶𝑀

𝑡𝑢𝑟𝑏.                (33) 

Substituting Eqs (10) and (32) into Eq. (33), the moment of 
friction viscosity forces in turbulent motion is 

𝑀𝑇
𝑡𝑢𝑟𝑏 = 𝐹𝑇

𝑡𝑢𝑟𝑏 ⋅ 𝑟𝑖 = 𝜌𝑚 ⋅ 𝐴𝑖
2 ⋅ 𝜔𝑖

2 ⋅ 𝑟𝑖
5 ×

×
0.0276⋅[arccos(1−ℎ𝑖)−√ℎ𝑖⋅(2−ℎ𝑖)⋅(1−ℎ𝑖)]

√2⋅𝐴𝑖⋅√ℎ𝑖⋅(2−ℎ𝑖)⋅Re
7

.   (34) 

The dimensionless torque of hydraulic resistance due to oil 
friction at the face surface of the toothed gear under turbulent flow 
conditions is 

𝐶𝑇
𝑡𝑢𝑟𝑏 =

𝑀𝑇
𝑡𝑢𝑟𝑏

0.5⋅𝜌𝑚⋅𝜔𝑖
2⋅𝑟𝑖

5 =

= 𝐴𝑖
2 ⋅

0.0276⋅[arccos(1−ℎ𝑖)−√ℎ𝑖⋅(2−ℎ𝑖)⋅(1−ℎ𝑖)]

√2⋅𝐴𝑖⋅√ℎ𝑖⋅(2−ℎ𝑖)⋅Re
7

.    (35) 

The total torque of the hydromechanical resistance of the gear 
immersed into the oil bath is determined as follows:  

𝑀 = 0.5 ⋅ 𝜌𝑚 ⋅ 𝜔𝑖
2 ⋅ 𝑟𝑖

5 ⋅ (𝐶𝑘 + 𝐶𝑇 + 𝐶𝑜𝑢𝑡).                (36) 

Power loss due to the hydrodynamic resistance to rotating 
gear immersed into the oil bath is  

𝑃 = 0.5 ⋅ 𝜌𝑚 ⋅ 𝜔𝑖
3 ⋅ 𝑟𝑖

5 ⋅ (𝐶𝑘 + 𝐶𝑇 + 𝐶𝑜𝑢𝑡).                (37) 

Based on the obtained formulas, the mathematical modelling 
in the symbolic module MathCAD 12 was carried out (Stavitskiy, 
2011, 2012 [38], [39], [40], [41], [42]), with variable parameters 

such as the kinematic viscosity νm and density of the lubricant at 
a specified temperature of the oil bath ρm:  

log[log(νm + 0.6)] = A ∙ log T + B, 

where T is the oil temperature in kelvins, and A and B are con-
stant coefficients. 

Figure 1 represents the analysis of the calculation results of 
the power losses due to the action of hydraulic resistance forces 

(37) and the experimental studies by Blok, 1962 [5], in which the 
research was carried out with several gears, the hydromechanical 
parameters of which were varied in the following ranges: module 
ranged from 1.5 mm to 5 mm; the angle of the tooth line inclina-
tion β = 25°; face width of the gear ring ranged from 14 to 24 
mm; and number of teeth ranged from 20 to 102) (Table 1). In Fig. 
1, the relative depth of gear immersion in the oil bath is 0.55. It 
allows predicting the influence of the geometrical parameters of 
the gearing on the hydrodynamic power losses. 

 
Fig. 1. Comparison of calculation results of the power losses  
            due to hydrodynamic resistance to rotation of a toothed gear  
            in the oil bath with experimental data 

Tab. 1. Hydromechanical parameters of the gears 

 Gear 1 Gear 2 
Gear 

2_Model 
Gear 3 

Gear 
4 

Gear 
4_Model 

Gear 5 

Nominal  
pitch circle  

diameter, mm 
96 153 153 90 159 159 100 

Face width, 
mm 

14 14 14 24 24 24 24 

Module, mm 1,5 1,5 1,5 3 3 3 5 

Number of 
teeth, n 

64 102 102 30 53 53 20 

4. DISCUSSION 

Comparative analyses of the computational and experimental 
results yielded the following observations: 

 The proposed method of calculating power losses due to 
hydromechanical resistance of the oil bath to rotation of the 
gear gives results with an error in the range of 1%–9% in rela-
tion to the experimental data; 

 The change in hydrodynamic losses with a change in gear 
speed is practically subject to the law of the cubic parabola, 
but up to a certain speed (in Fig. 1, it is about 4,000 rev/min). 
A further increase in rotational speed leads to a decrease in 
the amount of oil in the space (disturbed mass balance: more 
oil is ejected from the space by centrifugal forces than the 
amount of oil entering the space through the space ends); 

 At significant rotational speeds (in Fig. 1, it is from 
5,000 rev/min to 7,000 rev/min), the amount of oil in the spac-
es decreases, and the power losses due to the hydrodynamic 
resistance in the oil bath, accordingly, are slightly reduced. 
Theoretical studies have made it possible to determine the 
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presence of two modes of oil motion in the tooth spaces of gears, 
which are characterised by the ratio of centrifugal, gravitational, 
hydrostatic, viscous and Coriolis forces.  

5. CONCLUSIONS 

When changing the face clearance from zero to the critical 

value, the power loss due to the hydrodynamic resistance of the 
toothed gear immersed into the oil bath is always less than similar 

losses, if the face clearance is greater than the critical value.  

The dependence calculation Eq. (37) not only takes into ac-
count the influence of the geometrical parameters of the toothed 
gears immersed into the oil bath but also the structural character-
istics, such as the depth of the toothed gear immersion and the 

face clearance between the casing walls and the rotating gear. 

In order to determine the integral characteristics of energy 
dissipation and to develop a further engineering method for evalu-
ating the energy efficiency of gearings, a mathematical model of 
the oil behaviour in the tooth spaces of rotating gears immersed 
into an oil bath has been developed.  

The condition of the gear’s maximum rotational speed at 
which lubrication by immersion into the oil bath becomes ineffec-
tive is established and the scheme of circulating greasing is found 
to be necessary.  

Satisfactory coincidence of the theoretical and experimental 
results allows recommending the received analytical dependen-
cies for practical calculations of high-speed gears. 

Notation 

𝑏𝑖 – effective face width 

ℎ𝑖 – tooth height at any point of the tooth 

𝜙𝑖 – angle determined by the relative level of the oil bath 

𝑚 – module of the gearing 

𝑟𝑖 – radius to any point on the tooth profile curve 

𝑥 – profile offset factor 

𝑧𝑖 – number of teeth 

𝑔 – acceleration due to gravity 

𝛼𝑖 – operating pressure angle at any point of the involute of radius 𝑟𝑖 

𝛼𝑎 – pressure angle for addendum circle  

𝛼𝑓  – pressure angle for dedendum circle 

𝛿𝑖 – inclined angle of the meshing line of directrixes with respect to the 

pinion axis of rotation 
ρm – the density of the lubricant  

𝜇𝑚  – dynamic viscosity 

𝜈𝑚 – kinematic viscosity 

𝜑𝑖 – angle of gear rotation in the process of meshing 

𝑟𝑎 – tip fillet radius 

𝑟𝑓 – root fillet radius 

𝜔𝑖 – angular velocity 

ð  – thickness of the boundary layer 
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