PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface Characteristics and Wear Resistance of 316L Stainless Steel after Different Shot Peening Parameters

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study was conducted to evaluate the effect of ZrO2-based ceramic beads shot peening on the performance properties of AISI 316L austenitic steel. The results obtained in the roughness and microhardness measurements, the state of the surface layer, and the tribological properties (ball-on-disc) of the specimens after the peening process were compared to the results obtained for the reference specimen. The tests were carried out with varying parameters of pressure (0.3 MPa, 0.4MPa) and time (30s, 60s). The lowest values of COF (µ=0.576) and wear factor (K=3.95*10-4 mm3N-1m-1) were observed for the surface peened using parameters: 0.4 MPa and 60s. By increasing the time twice, a much lower wear factor can be achieved unlike when increasing the shot peening by 0.1 MPa. Observations of wear traces indicate that abrasive wear is predominant and the transfer of specimen material by countersample is also observed.
Słowa kluczowe
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Skoczylas A. Vibratory Shot Peening of Elements Cut with Abrasive Water Jet, Adv. Sci. Technol. Res. J., 2022, 16(2): 39–49, https://doi. org/10.12913/22998624/146272
  • 2. Lopez-Ruiz P., M.B. Garcia-Blanco, G. Vara, I. Fernández-Pariente, M. Guagliano, S. Bagherifard: Obtaining tailored surface characteristics by combining shot peening and electropolishing on 316L stainless steel. Applied Surface Science, 2019, 492: 1-7, https://doi.org/10.1016/j.apsusc.2019.06.042
  • 3. Tomków J., Świerczyńska A., Landowski M., Wolski A., Rogalski G.. Bead-on-Plate Underwater Wet Welding on S700MC Steel. Advances in Science and Technology Research Journal, 2021, 15: 288- 296. https://doi.org/10.12913/22998624/140223
  • 4. Chen X., Li Y., Zhu Y., Bai Y., Yang B.: Improved corrosion resistance of 316LN stainless steel performed by rotationally accelerated shot peening. Applied Surface Science, 2019, 481: 1305–1312. https://doi.org/10.1016/j.apsusc.2019.03.256
  • 5. Menezes M.R., C. Godoy, V.T.L. Buono, M. M.M. Schvartzman, J.C. Avelar-Batista Wilson: Effect of shot peening and treatment temperature on wear and corrosion resistance of sequentially plasma treated AISI 316L steel. Surface and Coatings Technology, 2017, 309: 651-662 https://doi.org/10.1016/j. surfcoat.2016.12.037
  • 6. Zwierzchowski M. Impact of tool magnetization on changes in the Surface layer of forging tools. Arch. Metall. Mater. 2019, 64(1): 317-324. DOI: 10.24425/amm.2019.126254
  • 7. Morozow D., Z. Siemiatkowski , E. Gevorkyan, M. Rucki, J. Matijošius. , A. Kilikevičius, J. Caban, Z. Krzysiak: Effect of Yttrium and Rhenium Ion Implantation on the Performance of Nitride Ceramic Cutting Tools. Materials 2020, 13: 4687, https://doi. org/10.3390/ma13204687
  • 8. Szala M. Phenomenological Model of Cavitation Erosion of Nitrogen ION Implanted Hiped Stellite 6. Advances in Materials Science 2023, 23(1): 98-109. https://doi.org/10.2478/adms-2023-0007
  • 9. Żebrowski R., M. Walczak: The effect of shot peening on the corrosion behaviour of Ti-6Al-4V alloy made by DMLS. Advances in Materials Science, 18(3), 2018: 43-54. https://doi.org/10.1515/ adms-2017-004
  • 10. Walczak M., M. Szala, W. Okuniewski: Assessment of Corrosion Resistance and Hardness of Shot Peened X5CrNi18-10 Steel Materials 2022, 15(24), p. 9000, https://doi.org/10.3390/ma15249000
  • 11. Azar V., B. Hashemi, Mahboobeh Rezaee Yazdi: The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer’s solution, Surface and Coatings Technology, 2010
  • 204(21–22): 3546-3551, https://doi.org/10.1016/j. surfcoat.2010.04.015
  • 12. Żebrowski R., Walczak M.: Effect of the shot peening on surface properties and tribological performance of Ti-6Al-4V alloy produced by means of DMLS technology. Arch. Metall. Mater., 2019, 64(1): 377-386. DOI: 10.24425/amm.2019.126263
  • 13. Gopi R., I. Saravanan, A. Devaraju, G. babu Loganathan, Investigation of shot peening process on stainless steel and its effects for tribological applications, Mater. Today Proc., 2020, 22: 580–584. https://doi.org/10.1016/j.matpr.2019.08.215
  • 14. Walczak M., Szala M., Effect of shot peening on the surface properties, corrosion and wear performance of 174PH steel produced by DMLS additive manufacturing. Archives of Civil and Mechanical Engineering, 2021, 21: 157-177.
  • 15. https://doi.org/10.1007/s43452-021-00306-3 16. Wu G.-l., S. Zhang, Y. Wang, M. Sun, Q. Zhang, V. Kovalenko, J. Yao: Porous ceramic coating formed on 316L by laser cladding combined plasma electrolytic oxidation for biomedical application. Transactions of Nonferrous Metals Society of China, 2022, 32(9): 2993-3004, https://doi.org/10.1016/ S1003-6326(22)65998-3
  • 17. Benedetti M., E. Torresani, M. Leoni, V. Fontanari, M. Bandini, C. Pederzolli, C. Potrich, The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting, Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71: 295- 306. https://doi.org/10.1016/j.jmbbm.2017.03.024
  • 18. Liu C.; Zheng, H.; Gu X.; Jiang B.; Liang J. Effect of sevee shot peening on corrosion behavior of AZ31 and AZ91 magnesium alloys. J. Alloys Compd., 2019, 770: 500–506. https://doi.org/10.1016/j. jallcom.2018.08.141
  • 19. Bagherifard S.; Hickey D.J.; Fintová S.; Pastorek F. Fernandez-Pariente, I.; Bandini, M.; Webster, T.J.; Guagliano, M. Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31. Acta Biomater. 2018, 66, 93–108. https:// doi.org/10.1016/j.actbio.2017.11.032.
  • 20. Huang H.; Niu J.; Xing X.; Lin Q.; Chen H. Qiao Y. Effects of the Shot Peening Process on Corrosion Resistance of Aluminum Alloy: A Review. Coatings, 2022, 12: 629. https://doi.org/10.3390/ coatings12050629
  • 21. Walczak M., Pieniak D., Niewczas A.M. Effect of recasting on the useful properties CoCrMoW alloy. Eksploatacja i niezawodnosc – Maintenance and Reliability, 2014, 16 (2): 330–336.
  • 22. Kameyama, Y.; Komotori, J. Effect of micro ploughing during fine particle peening process on the microstructure of metallic materials. J. Mater. Processing Technol., 2009, 209: 6146–6155. https://doi. org/10.1016/j.jmatprotec.2009.08.010.
  • 23. Ganesh BKC, Sha W, Ramanaiah N, Krishnaiah A. Effect of shotpeening on sliding wear and tensile behavior of titanium implant alloys. Materials and Design, 2014, 56: 480-486. https://doi.org/10.1016/j. matdes.2013.11.052
  • 24. Barzoukas H, Jauffret J. Peening with ceramic shot. ICSP-4, 1990: 47-56.
  • 25. Żebrowski, R.; Walczak, M.; Klepka, T.; Pasierbiewicz, K. Effect of the shot peening on Surface properties of Ti-6Al-4V alloy produced by means of DMLS technology. Eksploatacja i niezawodność – Maintenance and Reliability, 2019, 21: 46–53. https://doi.org/10.17531/ein.2019.1.6
  • 26. Chen, X.H.; Lu, J.; Lu, L.; Lu, K. Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr. Mater., 2005, 52: 1039–1044. https://doi. org/10.1016/j.scriptamat.2005.01.023
  • 27. Balusamy T., T.S.N. Sankara Narayanan, K. Ravichandran, Il Song Park, Min Ho Lee: Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel, Corrosion Science, 2013, 74: 332-344. https://doi. org/10.1016/j.corsci.2013.04.056
  • 28. Wang Z.B., N.R. Tao, S Li, W. Wang, G. Liu, J. Lu, K. Lu, Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Materials Science and Engineering: A, 2003, 352(1–2): 144-149. https://doi.org/10.1016/ S0921-5093(02)00870-5
  • 29. AlMangour B., J.-M. Yang,Improving the Surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Materials & Design, 2016, 110: 914-924. https://doi.org/10.1016/j.matdes.2016.08.037
  • 30. Brinckmann S., G. Dehm,Nanotribology in austenite: Plastic plowing and crack formation. Wear, 2015, 338–339: 436-440. https://doi.org/10.1016/j. wear.2015.05.001
  • 31. Yang Y., Y. Zhu, M.M. Khonsari, H. Yang, Wear anisotropy of selective laser melted 316L stainless steel, Wear, 2019, 428–429: 376-386. https://doi. org/10.1016/j.wear.2019.04.001
  • 32. Sanjeev KC, P.D. Nezhadfar, C. Phillips, M.S. Kennedy, N. Shamsaei, R.L. Jackson: Tribological behavior of 17–4 PH stainless steel fabricated by traditional manufacturing and laser-based additive manufacturing methods. Wear, 2019, 440–441: 203100, https:// doi.org/10.1016/j.wear.2019.203100
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3116af7e-e816-4c6c-b1f9-f37f3b2e1316
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.