PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on low frequency ripple suppression technology of inverter based on model prediction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The low frequency ripple of the input side current of the single-phase inverter will reduce the efficiency of the power generation system and affect the overall performance of the system. Aiming at this problem, this paper proposes a two-modal modulation method and its MPC multi-loop composite control strategy on the circuit topology of a single-stage boost inverter with a buffer unit. The control strategy achieves the balance of active power on both sides of AC and DC by controlling the stable average value of the buffer capacitor voltage, and provides a current reference for inductance current of the DC input side. At the same time, the MPC controller uses the minimum inductor current error as the cost function to control inductor current to track its reference to achieve low frequency ripple suppression of the input current. In principle, it is expounded that the inverter using the proposed control strategy has better low frequency ripple suppression effect than the multi-loop PI control strategy, and the conclusion is proved by the simulation data. Finally, an experimental device of a single-stage boost inverter using MPC multi-loop composite control strategy is designed and fabricated, and the experimental results show that the proposed research scheme has good low frequency ripple suppression effect and strong adaptability to different types of loads.
Rocznik
Strony
443--460
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wz.
Twórcy
autor
  • Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou University China
autor
  • Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou University China
autor
  • Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou University China
autor
  • College of Electrical Engineering, Qingdao University China
autor
  • State Grid Fujian Electric Power Co., Ltd. China
Bibliografia
  • [1] Li Q., Wolfs P., A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies with Three Different DC Link Configurations, IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1320–1333 (2008), DOI: 10.1109/TPEL.2008.920883.
  • [2] Yiwen C., Sixu L., Zhiliang H., Jiahui J., Dual-mode control magnetically-coupled energy storage inductor boost inverter for renewable energy, Archives of Electrical Engineering, vol. 71, no. 1, pp. 211–225 (2022), DOI: 10.24425/aee.2022.140206.
  • [3] Chen D., Jiang J., Qiu Y., Zhang J., Huang F., Single-Stage Three-Phase Current-Source Photovoltaic Grid-Connected Inverter High Voltage Transmission Ratio, IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 7591–7601 (2017), DOI: 10.1109/TPEL.2016.2622722.
  • [4] Chen D., Chen Y., Step-up AC Voltage Regulators with High-Frequency Link, IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 390–397 (2013), DOI: 10.1109/TPEL.2012.2197829.
  • [5] Hussain H. M., Narayanan A., Nardelli P. H. J., Yang Y., What is Energy Internet? Concepts, Technologies, and Future Directions, IEEE Access, vol. 8, pp. 183127–183145 (2020), DOI: 10.1109/AC-CESS.2020.3029251.
  • [6] Hu H., Harb S., Kutkut N., Batarseh I., Shen Z. J., A Review of Power Decoupling Techniques for Microinverters with Three Different Decoupling Capacitor Locations in PV Systems, IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2711–2726 (2013), DOI: 10.1109/TPEL.2012.2221482.
  • [7] Can E., Toksoy M. S., A flexible closed-loop (fcl) pid and dynamic fuzzy logic + pid controllers for optimization of dc motor, Journal of Engineering Research (2021), DOI: 10.36909/jer.13813.
  • [8] Can E., Sayan H. H., Development of fractional sinus pulse width modulation with 𝛽 gap on threestep signal processing, International Journal of Electronics, vol. 110, no. 3, pp. 527–546 (2023), DOI: 10.1080/00207217.2022.2040056.
  • [9] Yang F., Ge H., Yang J., Dang R., Wu H., A Family of Dual-Buck Inverters with an Extended Low-Voltage DC-Input Port for Efficiency Improvement Based on Dual-Input Pulsating Voltage-Source Cells, IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 3115–3128 (2018), DOI: 10.1109/TPEL.2017.2706762.
  • [10] Chen D., Qiu Y., Chen Y., He Y., Nonlinear PWM-Controlled Single-Phase Boost Mode Grid-Connected Photovoltaic Inverter with Limited Storage Inductance Current, IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2717–2727 (2017), DOI: 10.1109/TPEL.2016.2571725.
  • [11] Chen D., Chen S., Combined Bidirectional Buck–Boost DC–DC Chopper-Mode Inverters with High-Frequency Link, IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 3961–3968 (2014), DOI: 10.1109/TIE.2013.2284149.
  • [12] Chen D., Wang G., Differential Buck DC–DC Chopper Mode Inverters with High-Frequency Link, IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1444–1451 (2011), DOI: 10.1109/TPEL.2010.2078517.
  • [13] Rahbar K., Chai C. C., Zhang R., Energy Cooperation Optimization in Microgrids with Renewable Energy Integration, IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1482–1493 (2018), DOI: 10.1109/TSG.2016.2600863.
  • [14] Bogaraj T., Kanakaraj J., Mohan Kumar K., Optimal sizing and cost analysis of hybrid power system for a stand-alone application in Coimbatore region: a case study, Archives of Electrical Engineering, vol. 64, no. 1, pp. 139–155 (2015), DOI: 10.1515/aee-2015-0013.
  • [15] Zhang Y., Fu W., He P., A Novel Power Decoupling Circuit in Paralleled with AC Side in Photovoltaic Micro-Inverter, 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 821–826 (2019), DOI: 10.1109/ICIEA.2019.8834187.
  • [16] Liao C.-Y., Lin W.-S., Chen Y.M., Chou C. Y., A PV Micro-inverter with PV Current Decoupling Strategy, IEEE Transactions on Power Electronics, vol. 32, no. 8, pp. 6544–6557 (2017), DOI: 10.1109/TPEL.2016.2616371.
  • [17] Zhang Y., Chen Y., Wei L., Jiang J., Asymmetric Full Bridge Bidirectional DC-AC Converter Based on V2G Platform, 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE), pp. 1–6 (2021), DOI: 10.1109/CIYCEE53554.2021.9676941.
  • [18] Sun Y., Liu Y., Su M., Xiong W., Yang J., Review of Active Power Decoupling Topologies in Single-Phase Systems, IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4778–4794 (2016), DOI: 10.1109/TPEL.2015.2477882.
  • [19] Hou R., Emadi A., Applied Integrated Active Filter Auxiliary Power Module for Electrified Vehicles with Single-Phase Onboard Chargers, IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 1860–1871 (2017), DOI: 10.1109/TPEL.2016.2569486.
  • [20] Nguyen H.V., To D.-D., Lee D.-C., Onboard Battery Chargers for Plug-in Electric Vehicles with Dual Functional Circuit for Low-Voltage Battery Charging and Active Power Decoupling, IEEE Access, vol. 6, pp. 70212–70222 (2018), DOI: 10.1109/ACCESS.2018.2876645.
  • [21] Zhang Y., Fang J., Gao F., Gao S., Rogers D. J., Zhu X., Integrated High- and Low-Frequency Current Ripple Suppressions in a Single-Phase Onboard Charger for EVs, IEEE Transactions on Power Electronics, vol. 36, no. 2, pp. 1717–1729 (2021), DOI: 10.1109/TPEL.2020.3006174.
  • [22] Liu Y., Sun Y., Su M., Zhou M., Zhu Q., Li X., A Single-Phase PFC Rectifier with Wide Output Voltage and Low-Frequency Ripple Power Decoupling, IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 5076–5086 (2018), DOI: 10.1109/TPEL.2017.2734088.
  • [23] Lin Z., Su M., Liu Y., Sun Y., Liao Y., Chen X., Single-phase Integrated Power Decoupling Inverter Based on Boost Converter, 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), pp. 405–408 (2020), DOI: 10.1109/IPEMC-ECCEAsia48364.2020.9368232.
  • [24] Xu S., Cao B., Chang L., Zhou J., Hybrid Modulation and Power Decoupling Control on Single-Phase Bridge Inverter with Buck-Boost Converter, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 58515864 (2021), DOI: 10.1109/JESTPE.2020.3027682.
  • [25] Xu X., Su M., Sun Y., Guo B., Wang H., Xu G., Four-Switch Single-Phase Common-Ground PV Inverter with Active Power Decoupling, IEEE Transactions on Industrial Electronics, vol. 69, no. 3, pp. 3223–3228 (2022), DOI: 10.1109/TIE.2021.3063962.
  • [26] Sun H., Wang H., Qi W., Automatic Power Decoupling Controller of Dependent Power Decoupling Circuit for Enhanced Transient Performance, IEEE Transactions on Industrial Electronics, vol. 66, no. 3, pp. 1820–1831 (2019), DOI: 10.1109/TIE.2018.2838100.
  • [27] Huang K. P., Wang Y., Wai R. J., Design of Power Decoupling Strategy for Single-Phase Grid-Connected Inverter Under Nonideal Power Grid, IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2938–2955 (2019), DOI: 10.1109/TPEL.2018.2845466.
  • [28] Liu S., He Y., Wang G., Wang M., Power Decoupling Control for Boost-Type Single-Phase Inverter with Active Power Buffer, 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2280–2285 (2019), DOI: 10.1109/ECCE.2019.8912888.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-310d17cd-dffb-4930-b3aa-8b486ef969a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.