PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of macro-geometry of the grinding wheel active surface on traverse internal cylindrical grinding process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents results of experimental tests of internal cylindrical traverse grinding in which the total machining allowance is removed in a single pass. Grinding wheels with zone-diversified structure made on basis of abrasive grains from Al2O3 were used in the process. Such tools are characterized by different construction of rough and finish grinding zones. Moreover, conic chamfer is shaped on their active surface that allows for even distribution of machining allowance on the grinding wheel surface. What is described in the hereby work is a device for precise shaping of conic chamfer on the grinding wheel active surface (GWAS). The work also presents results of tests whose aim was to determine the influence of grinding wheel macrogeometry on the process of internal cylindrical traverse grinding of internal cylindrical surfaces made from steel 100Cr6. Changes of selected parameters of the machined surface geometric structure (Ra, Rz, RSm, Rdq and RTp) and values of the grinding power P were analyzed. It was proved that the greater the conic chamfer width, the better the results.
Rocznik
Strony
15--22
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Department of Production Engineering, Koszalin University of Technology, Raclawicka 15-17, 75-620, Koszalin, Poland
autor
  • Faculty of Mechanical Engineering, Department of Production Engineering, Koszalin University of Technology, Poland
autor
  • Department of Engineering and Technological Management, Technical University of Cluj Napoca, North University Center of Baia Mare, Romania
Bibliografia
  • 1. Nakajima T., Okamura K., Uno Y. (1984). Traverse grinding techniques for improving both productivity and surface finish. In: SME International Grinding Conference, Fontana, WI, USA, paper no. Mr 84-534.
  • 2. Klocke F., Hegener G., Deacu L. (1996). Hochleistungs-Aussenrund-Formschleifen. Innovatives Fertigungsverfahren vereint hohe Flexibilität und Produktivität. ZWF, Vol. 91, No. 4, pp. 164-167. (in German)
  • 3. Klocke F., Hegener G. (1999). Schnell, gut und flexibel: Hochleistungs-Aussenrund-Formschleifen. IDR, Vol. 33, No. 2, pp. 153-160. (in German)
  • 4. Xingas A. (1999). Next generation grinding. American Mechanist, Vol. 143, No. 9, pp. 58, 64.
  • 5. Hegener G. (2000). In einem Zug geschliffen. Wellenförmige Werkstücke flexibel und mit hoher Leistung schleiftechnisch bearbeiten. Maschinenmarkt, Vol. 106, No. 16, pp. 38-43. (in German)
  • 6. Weinert K., Finke M., Kötter D. (2003). Wirtschaftliche Alternative zum Hartdrehen. Innenrund-Schälschleifen steigert Flexibilität beim Schleifen von Futterteilen. Maschinenmarkt, 2003, Vol. 109, No. 48, pp. 44-47. (in German)
  • 7. Lüetjens P., Mushardt H. (2004). Grinding out hardened parts. American Mechanist, Vol. 148, No. 3, pp. 52–59.
  • 8. Webster J., Tricard M. (2004). Innovations in abrasive products for precision grinding. Annals of the CIRP, Vol. 53, No. 2, pp. 597-617.
  • 9. Nadolny K. (2013). A review on single-pass grinding processes. Journal of Central South University of Technology, Vol. 20, No. 6, pp. 1502-1509.
  • 10. Słowinski B., Nadolny K. (2007). Effective manufacturing method for automated diameter grinding. Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 1, No. 4, pp. 472-480.
  • 11. Nadolny K., Plichta J. (2006). Possibilities of development in the single-pass internal cylindrical grinding. In: IEEE 19th International Conference on Systems Engineering ICSENG'08, Las Vegas, NV, USA, 19-21 August, paper no. ICSEng.2008.93, pp. 230-235.
  • 12. Herman D., Plichta J., Nadolny K. (2006). New ceramic abrasive tools for rough and finishing grinding in one pass. Materials Science Forum, Vol. 526, pp. 163–168.
  • 13. Nadolny K., Kaplonek W. (2012). Design of a device for precision shaping of the grinding wheel macro- and microgeometry. Journal of Central South University of Technology, Vol. 19, No. 1, pp. 135-143.
  • 14. Nadolny K. (2013). Microdiscontinuities of the grinding wheel and their effects on its durability during internal cylindrical grinding. Machining Science and Technology, Vol. 17, No. 1, pp. 74-92.
  • 15. Kaczmarek J. (1999). New approach of the characteristics of surface microstereometry on the basis of facing. Advances in Manufacturing Science and Technology, Vol. 23, No. 4, pp. 55-70.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-310ca8ee-3196-4100-b48d-9a5feebc94b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.