PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identifying epileptic EEGs and congestive heart failure ECGs under unified framework of wavelet scattering transform, bidirectional weighted (2D)2PCA and KELM

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to achieve the accurate identifications of various electroencephalograms (EEGs) and electrocardiograms (ECGs), a unified framework of wavelet scattering transform (WST), bidirectional weighted two-directional two-dimensional principal component analysis (BW(2D)2PCA) and grey wolf optimization based kernel extreme learning machine (KELM) was put forward in this study. To extract more discriminating features in the WST domain, the BW(2D)2PCA was proposed based on original two-directional two-dimensional principal component analysis, by considering both the contribution of eigenvalue and the variation of two adjacent eigenvalues. Totally fifteen classification tasks of classifying normal vs interictal vs ictal EEGs, non-seizure vs seizure EEGs and normal vs congestive heart failure (CHF) ECGs were investigated. Applying patient non-specific strategy, the proposed scheme reported ACCs of no less than 99.300 ± 0.121 % for all the thirteen classification cases of Bonn dataset in classifying normal vs interictal vs ictal EEGs, MCC of 90.947 ± 0.128 % in distinguishing non-seizure vs seizure EEGs of CHB-MIT dataset, and MCC of 99.994 ± 0.001 % in identifying normal vs CHF ECGs of BBIH dataset. Experimental results indicate BW(2D)2PCA based framework outperforms (2D)2PCA based scheme, the high-performance results manifest the effectiveness of the proposed framework and our proposal is superior to most existing approaches.
Twórcy
autor
  • College of Communication Engineering, Jilin University, China
  • College of Communication Engineering, Jilin University, No. 5988, Renmin Street, Changchun, Jilin Province, China
  • FAW Tooling Die Manufacturing Company LTD, China
Bibliografia
  • [1] Epilepsy. https://www.who.int/health-topics/epilepsy. Last accessed: June 4, 2021.
  • [2] Ponikowski P, Anker SD, AlHabib KF, et al. Heart failure: preventing disease and death worldwide. ESC Heart Failure 2014;1(1):4-25.
  • [3] Jahmunah V, Oh SL, Wei JKE, et al. Computer-aided diagnosis of congestive heart failure using ECG signals-A review. Phys Med 2019;62:95-104.
  • [4] Thomas RH, Ronald LVH. Positron emission tomography and single photon emission computed tomography in epilepsy care. Semin Nucl Med 2003;33(2):88-104.
  • [5] Martis RJ, Tan JH, Chua CK, Loon TC, Yeo SWJ. Epileptic EEG classification using nonlinear parameters on different frequency bands. J Mech Med Biol 2015;15(3):1550040.
  • [6] Zhang T, Han Z, Chen X, Chen W. Subbands and cumulative sum of subbands based nonlinear features enhance the performance of epileptic seizure detection. Biomed Signal Process Control 2021;69 102827.
  • [7] Chan H, Lin J, Du C, Wu C. Time-frequency distribution of heart rate variability below 0.05 Hz by Wigner-Ville spectral analysis in congestive heart failure patients. Med Eng Phys 1997;19(6):581-7.
  • [8] Ech-Choudany Y, Scida D, Assarar M, et al. Dissimilarity-based time-frequency distributions as features for epileptic EEG signal classification. Biomed Signal Process Control 2020;64(4) 102268.
  • [9] Kayikcioglu L, Akdeniz F, Kose C, Kayikcioglu T. Timefrequency approach to ECG classification of myocardial infarction. Comput Electr Eng 2020;84 106621.
  • [10] Bajaj V, Rai K, Kumar A, Sharma D. Time-frequency image based features for classification of epileptic seizures from EEG signals. Biomed Phys Eng Express 2017;3(1) 015012.
  • [11] Ricardo R, Arturo JO, Ivan O, Susana S. Feature extraction from EEG spectrograms for epileptic seizure detection. Pattern Recogn Lett 2020;133:202-9.
  • [12] Zarei A, Asl BM. Automatic seizure detection using orthogonal matching pursuit, discrete wavelet transform, and entropy based features of EEG signals. Comput Biol Med 2021;131 104250.
  • [13] Mathivanan P, Ganesh AB. ECG steganography based on tunable Q-factor wavelet transform and singular value decomposition. Int J Imaging Syst Technol 2021;31(1):270-87.
  • [14] Hraga B, Yan LA, Ss C, Abdulla S. A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification. J Neurosci Methods 2019;312:43-52.
  • [15] Zhang T, Chen W, Li M. Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybernetics and Biomedical Engineering 2018;38:519-34.
  • [16] Ashokkumar SR, Anupallavi S, Premkumar M, et al. Implementation of deep neural networks for classifying electroencephalogram signal using fractional S-transform for epileptic seizure detection. Int J Imaging Syst Technol 2021;31 (2):895-908.
  • [17] Kumar M, Pachori RB, Acharya UR. Use of Accumulated entropies for automated detection of congestive heart failure in flexible analytic wavelet transform framework based on short-term HRV signals. Entropy 2017;19(3):92.
  • [18] Cura OK, Akan A. Classification of epileptic EEG signals using synchrosqueezing transform and machine learning. Int J Neural Syst 2020;31(5):2150005.
  • [19] Daqrouq K, Dobaie A. Wavelet based method for congestive heart failure recognition by three confirmation functions. Comput Math Methods Med 2016;2016:7359516.
  • [20] Zhang T, Chen W, Li M. Fuzzy distribution entropy and its application in automated seizure detection technique. Biomed Signal Process Control 2018;39:360-77.
  • [21] Swami P, Gandhi TK, Panigrahi BK, et al. A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst Appl 2016;56:116-30.
  • [22] Sudarshan VK, Acharya UR, Oh SL, et al. Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2s of ECG signals. Comput Biol Med 2017;83:48-58.
  • [23] Karboub K, Tabaa M, Monteiro F, et al. Automated diagnosis system for outpatients and inpatients with cardiovascular diseases. IEEE Sens J 2021;21(2):1935-46.
  • [24] Zhang T, Chen W, Li M. Classification of inter-ictal and ictal EEGs using multi-basis MODWPT, dimensionality reduction algorithms and LS-SVM: A comparative study. Biomed Signal Process Control 2019;47:240-51.
  • [25] Malekzadeh A, Zare A, Yaghoobi M, et al. Epileptic seizures detection in EEG signals using fusion handcrafted and deep learning features. Sensors 2021;21(22):7710.
  • [26] Zhang T, Chen W, Li M. Complex-valued distribution entropy and its application for seizure detection. Biocybern Biomed Eng 2020;40(1):306-23.
  • [27] Savadkoohi M, Oladunni T, Thompson L. A machine learning approach to epileptic seizure prediction using electroencephalogram (EEG) signal. Biocybern Biomed Eng 2020;40(3):1328-41.
  • [28] Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing 2006;70:489-501.
  • [29] Anter AM, Elaziz MA, Zhang Z. Real-time epileptic seizure recognition using Bayesian genetic whale optimizer and adaptive machine learning. Futur Gener Comput Syst 2022;127:426-34.
  • [30] Clement VS, Ramaraj E. A novel deep learning based gated recurrent unit with extreme learning machine for electrocardiogram (ECG) signal recognition. Biomed Signal Process Control 2021;68(1) 102779.
  • [31] Liu J, Wang J, Peng X, He C. Non-invasive diagnosis of fetal arrhythmia based on multi-domain feature and hierarchical extreme learning machine. Biomed Signal Process Control 2023;79(2) 104191.
  • [32] Diker A, Avci D, Avci E, Gedikpinar M. A new technique for ECG signal classification genetic algorithm wavelet kernel extreme learning machine. Optik 2019;180:46-55.
  • [33] Cai Q, Cui GC, Wang HX. EEG-based emotion recognition using multiple kernel learning. Mach Intell Res 2022;19 (5):472-84.
  • [34] Yang P, Wang D, Zhao WB, et al. Ensemble of kernel extreme learning machine based random forest classifiers for automatic heartbeat classification. Biomed Signal Process Control 2021;63 102138.
  • [35] Sheeba A, Padmakala S, Subasini CA, Karuppiah SP. MKELM: mixed kernel extreme learning machine using BMDA optimization for web services based heart disease prediction in smart healthcare. Comput Methods Biomech Biomed Eng 2022;25(10):1180-94.
  • [36] Zhang Y, Wang Y, Zhou G, et al. Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst Appl 2018;96:302-10.
  • [37] Caffarini J, Gjini K, Sevak B, et al. Engineering nonlinear epileptic biomarkers using deep learning and benford’s law. Sci Rep 2022;12(1):1-13.
  • [38] Tseng KK, Wang C, Xiao T, et al. Sliding large kernel of deep learning algorithm for mobile electrocardiogram diagnosis. Comput Electr Eng 2021;96 107521.
  • [39] Islam MS, Thapa K, Yang SH. Epileptic-Net: an improved epileptic seizure detection system using dense convolutional block with attention network from EEG. Sensors 2022;22 (3):728.
  • [40] Borhade RR, Nagmode MS. Modified atom search optimization-based deep recurrent neural network for epileptic seizure prediction using electroencephalogram signals. Biocybern Biomed Eng 2020;40(4):1638-53.
  • [41] Liu F, Xia S, Wei S, et al. Wearable electrocardiogram quality assessment using wavelet scattering and LSTM. Front Physiol 2022;13 905447.
  • [42] Andrzejak RG, Lehnertz K, Mormann F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 2001;64(6) 061907.
  • [43] Goldberger AL, Amaral LAN, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000;101(23):e215-20.
  • [44] Baim DS, Colucci WS, Monrad ES, et al. Survival of patients with severe congestive heart failure treated with oral milrinone. J Am Coll Cardiol 1986;7(3):661-70.
  • [45] Bhattacharyya A, Pachori RB. A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans Biomed Eng 2017;64 (9):2003-15.
  • [46] Bruna J, Mallat S. Invariant scattering convolution networks. IEEE Trans Pattern Anal Mach Intell 2013;35(8):1872-86.
  • [47] Liu Z, Yao G, Zhang Q, Zeng X. Wavelet Scattering Transform for ECG Beat Classification. Comput Math Methods Med 2020;2020(7):3215681.
  • [48] Ma S, Bo C, Shang Z, Liu G. Scattering transform and LSPTSVM based fault diagnosis of rotating machinery. Mech Syst Sig Process 2018;104:155-70.
  • [49] Jolliffe IT. Principal Component Analysis. NewYork: Springer; 1986.
  • [50] Yang J, Zhang D, Frangi AF, Yang JY. Two-dimensional PCA: a new approach to appearance based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 2004;26 (1):131-7.
  • [51] Zhang D, Zhou Z. (2D)2 PCA: Two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 2005;69(1):224-31.
  • [52] D. Que, B. Chen, J. Hu. A novel single training sample face recognition algorithm based on modular weighted (2D)2 PCA. In: International Conference on Signal Processing, 2008, p. 1553-6.
  • [53] Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multi-class classification. IEEE Trans Syst Man Cybern B Cybern 2012;42(2):513-29.
  • [54] Pinto M, Coelho T, Leal A, et al. Interpretable EEG seizure prediction using a multiobjective evolutionary algorithm. Sci Rep 2022;12(1):4420.
  • [55] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw 2014;69:46-61.
  • [56] Nadimi-Shahraki MH, Taghian S, Mirjalili S. An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl 2021;166 113917.
  • [57] H. He, Y. Bai, E.A Garcia, S. Li. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In: IEEE International Joint Conference on Neural Networks, 2008, p. 1322-8.
  • [58] Acharya UR, Sree SV, Alvin A, Suri JS. Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Syst Appl 2012;39 (10):9072-8.
  • [59] Jaiswal AK, Banka H. Epileptic seizure detection in EEG signal with GModPCA and support vector machine. Biomed Mater Eng 2017;28(2):141-57.
  • [60] Gupta V, Pachori RB. Epileptic seizure identification using entropy of FBSE based EEG rhythms. Biomed Signal Process Control 2019;53 101569.
  • [61] Liu Y, Lin Y, Jia Z, et al. Representation based on ordinal patterns for seizure detection in EEG signals. Comput Biol Med 2020;126 104033.
  • [62] Akyol K. Stacking ensemble based deep neural networks modeling for effective epileptic seizure detection. Expert Syst Appl 2020;148 113239.
  • [63] Peng H, Lei C, Zheng S, et al. Automatic epileptic seizure detection via Stein kernel-based sparse representation. Comput Biol Med 2021;132 104338.
  • [64] Sukriti M, Chakraborty DM. Epilepsy seizure detection using kurtosis based VMD’s parameters selection and bandwidth features. Biomed Signal Process Control 2021;64 102255.
  • [65] Supriya S, Siuly S, Wang H, Zhang Y. New feature extraction for automated detection of epileptic seizure using complex network framework. Appl Acoust 2021;180 108098.
  • [66] Omidvar M, Zahedi A, Bakhshi H. EEG signal processing for epilepsy seizure detection using 5-level Db4 discrete wavelet transform, GA-based feature selection and ANN/SVM classifiers. J Ambient Intell Humanized Comput 2021:1-9. https://doi.org/10.1007/s12652-020-02837-8.
  • [67] Li M, Chen W. FFT-based deep feature learning method for EEG classification. Biomed Signal Process Control 2021;66 102492.
  • [68] Sukriti M, Chakraborty DM. Automated detection of epileptic seizures using multiscale and refined composite multiscale dispersion entropy. Chaos Solitons Fractals 2021;146 110939.
  • [69] Fasil OK, Rajesh R. Epileptic seizure classification using shifting sample difference of EEG signals. J Ambient Intell Humanized Comput 2022:1-14. https://doi.org/10.1007/ s12652-022-03737-9.
  • [70] Zhang S, Liu G, Xiao R, et al. A combination of statistical parameters for epileptic seizure detection and classification using VMD and NLTWSVM. Biocybern Biomed Eng 2022;42 (1):258-72.
  • [71] Sameer M, Gupta B. Time-frequency statistical features of delta band for detection of epileptic seizures. Wirel Pers Commun 2022;122:728489-99.
  • [72] Yan X, Yang D, Lin Z, Vucetic B. Significant low-dimensional spectral-temporal features for seizure detection. IEEE Trans Neural Syst Rehabil Eng 2022;30:668-77.
  • [73] Orosco L, Correa AG, Diez P, Laciar E. Patient non-specific algorithm for seizures detection in scalp EEG. Comput Biol Med 2016;71:128-34.
  • [74] Thodoroff P, Pineau J, Lim A. Learning robust features using deep learning for automatic seizure detection. In: Proceedings of the 1st Machine Learning for Healthcare Conference, vol. 56, 2016, p. 178-90.
  • [75] Birjandtalab J, Pouyan MB, Cogan D, et al. Automated seizure detection using limited-channel EEG and non-linear dimension reduction. Comput Biol Med 2017;82:49-58.
  • [76] Yang S, Li B, Zhang Y, et al. Selection of features for patient-independent detection of seizure events using scalp EEG signals. Comput Biol Med 2020;119 103671.
  • [77] Yao X, Li X, Ye Q, et al. A robust deep learning approach for automatic classification of seizures against non-seizures. Biomed Signal Process Control 2021;64 102215.
  • [78] Guo Y, Jiangb X, Tao L, et al. Epileptic seizure detection by cascading isolation forest-based anomaly screening and EasyEnsemble. IEEE Trans Neural Syst Rehabilitation Eng 2022;30:915-24. https://doi.org/10.1109/TNSRE.2022.3163503.
  • [79] Zhang Y, Yao S, Yang R, et al. Epileptic seizure detection based on bidirectional gated recurrent unit network. IEEE Trans Neural Syst Rehabil Eng 2022;30:135-45.
  • [80] Ru Y, Li J, Chen H, Li J. Epilepsy detection based on variational mode decomposition and improved sample entropy. Comput Intell Neurosci 2022;2022:6180441.
  • [81] Orhan U. Real-time CHF detection from ECG signals using a novel discretization method. Comput Biol Med 2013;43 (10):1556-62.
  • [82] W Chen, G Liu, S Su, et al. A CHF detection method based on deep learning with RR intervals. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2017, p. 3369-72.
  • [83] Acharya UR, Fujita H, Oh SL, et al. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. Appl Intell 2019;49:16-27.
  • [84] Wang L, Zhou X. Detection of congestive heart failure based on LSTM-based deep network via short-term RR intervals. Sensors 2019;19(7):1502.
  • [85] Hussain L, Awan IA, Wajid A, et al. Detecting congestive heart failure by extracting multimodal features and employing machine learning techniques. Biomed Res Int 2020;2020:4281243.
  • [86] Darmawahyuni A, Nurmaini S, Yuwandini M, et al. Congestive heart failure waveform classification based on short time-step analysis with recurrent network. Inf Med Unlocked 2020;21 100441.
  • [87] Yang W, Si Y, Zhang G, et al. A novel method for automated congestive heart failure and coronary artery disease recognition using THC-Net. Inf Sci 2021;568:427-47.
  • [88] Sharma K, Rao BM, Marwaha P, Kumar A. Accurate detection of congestive heart failure using electrocardiomatrix technique. Multimed Tools Appl 2022. https://doi.org/10.1007/ s11042-022-12773-8.
  • [89] Kusuma S, Jothi KR. ECG signals-based automated diagnosis of congestive heart failure using deep CNN and LSTM architecture. Biocybern Biomed Eng 2022;42(1):247-57.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-310b0477-d9a1-4498-9a59-4b087f27bbc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.