Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The heat transfer measurements were conducted during pool boiling of water on surfaces with microchannels. Parallel grooves were made on a copper surface with widths ranging from 0.2 mm to 0.5 mm at intervals of 0.1 mm. The inclination angle of the grooves to the horizontal was set at 30° and 60°, and the depth of the microchannel grooves was 0.3 mm. The achieved heat flux ranged from 25 kW/m² to 1730 kW/m², and the heat transfer coefficients ranged from 12 kW/(m²K) to 475 kW/(m²K). The influence of geometric parameters such as width, inclination angle of the microchannel, surface extension, and Bond number on heat exchange efficiency was examined. A nearly sixfold increase in α (heat transfer coefficient) and a twofold increase in critical heat flux were observed compared to a smooth surface.
Czasopismo
Rocznik
Tom
Strony
41--49
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering
Bibliografia
- [1] Liang, G., & Mudawar, I. (2018). Pool boiling critical heat flux (CHF) – Part 1: Review of mechanisms, models, and correlations. International Journal of Heat and Mass Transfer, 117, 1352–1367. doi: 10.1016/ j.ijheatmasstransfer.2017.09.134
- [2] Moon, J.H., Fadda, D., Shin, D.H., Kim, J.S., Lee, J., & You, S.M. (2021). Boiling-driven, wickless, and orientation-independent thermal ground plane. International Journal of Heat and Mass Transfer, 167, 120817. doi: 10.1016/j.ijheatmasstransfer.2020.120817
- [3] Chen, Z., Xie, T., & Utaka, Y. (2023). Enhanced critical heat flux in pool boiling applying the method of different-mode-interacting boiling for water. International Journal of Heat and Mass Transfer, 201, 123578. doi: 10.1016/j.ijheatmasstransfer.2022.123578
- [4] Chuang, T.J., Chang, Y.H., & Ferng, Y.,M. (2019). Investigating effects of heating orientations on nucleate boiling heat transfer, bubble dynamics, and wall heat flux partition boiling model for pool boiling. Applied Thermal Engineering, 163, 114358. doi:10.1016/j.applthermaleng.2019.114358
- [5] Qu, Z.G., Xu, Z.G., Zhao, C., Y., & Tao, W.Q. (2012). Experimental Study of pool boiling heat transfer on horizontal metallic foam surface with crossing and single-directional Vshaped groove in saturated water. International Journal of Multiphase Flow, 41, 44–55. doi: 10.1016/j.ijmultiphaseflow.2011.12.007
- [6] Cieśliński, J., & Kaczmarczyk, T. (2014). Pool boiling of nanofluids on rough and porous coated tubes: experimental and correlation. Archives of Thermodynamics, 35, 3–20. doi: 10.2478/aoter-2014-0010
- [7] Dickson, D., Bock, B.D., & Thome, J.R. (2024). Heat transfer of uncoated and nanostructure coated commercially microenhanced refrigeration tubes under pool boiling conditions. Applied Thermal Engineering, 236, 121757. doi: 10.1016/j.applthermaleng.2023.121757
- [8] Piasecka, M., Strąk, K., & Maciejewska, B. (2021). Heat transfer characteristics during flow along horizontal and vertical minichannels. International Journal of Multiphase Flow, 137,103559. doi: 10.1016/j.ijmultiphaseflow.2021.103559
- [9] Piasecka, M., & Strąk, K. (2022). Boiling heat transfer during flow in vertical mini-channels with a modified heated surface. Energies, 15, 7050. doi: 10.3390/en15197050
- [10] Khalaf-Allah, R.A., Mohamed, S.M., Saeed, E., & Tolan, M. (2023). Augmentation of water pool boiling heat transfer using heating surfaces fabricated by multi passive techniques. Applied Thermal Engineering, 219, 119693. doi: 10.1016/j.applthermaleng.2022.119693
- [11] Orman, Ł.J., Radek, N., Pietraszek, J., & Szczepaniak, M. (2020). Analysis of enhanced pool boiling heat transfer on laser-textured surfaces. Energies, 13, 1–19. doi: 10.3390/en13112700
- [12] Zhang, K., Bai, L., Lin, G., Jin, H., & Wen, D. (2019). Experimental study on pool boiling in a porous artery structure. Applied Thermal Engineering, 149, 377–384. doi: 10.1016/j.applthermaleng.2018.12.089
- [13] Liang, G., & Mudawar, I. (2019). Review of pool boiling enhance-ment by surface modification. International Journal of Heat and Mass Transfer, 128, 892–933. doi: 10.1016/j.ijheatmasstransfer.2018.09.026
- [14] Liu, B., Cao, Z., Zhang, Y., Wu, Z., Pham, A., Wang, W., Yan, Z., Wei, J., & Sundén, B. (2018). Pool boiling heat transfer of Npentane on micro/nanostructured surfaces. International Journal of Thermal Sciences, 130, 386–394. doi: 10.1016/j.ijthermalsci.2018.05.012
- [15] Kong, X., Zhang, Y., & Wei, J. (2018) Experimental study of pool boiling heat transfer on novel bistructured surfaces based on micro-pin-finned structure. Experimental Thermal and Fluid Science, 91, 9–19. doi: 10.1016/j.expthermflusci.2017.09.021
- [16] Gheitaghy, A.M., Samimi, A., & Saffari, H. (2017). Surface structuring with inclined minichannels for pool boiling improvement. Applied Thermal Engineering, 126, 892–902. doi:10.1016/j.applthermaleng. 2017.07.200
- [17] Kaniowski, R., & Pastuszko, R. (2023). Pool boiling experiment with Novec-649 in microchannels for heat flux prediction. Experimental Thermal and Fluid Science, 141, 110802. doi:10.1016/j.expthermflusci. 2022.110802
- [18] Skrzyniarz, M., Nowakowski, L., Miko, E., & Borkowski, K. (2021). Influence of relative displacement on surface roughness in longitudinal turning of X37CrMoV5-1 steel. Materials, 14,1317. doi: 10.3390/ma14051317
- [19] Jaikumar, A., & Kandlikar, S.G. (2016). Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels. International Journal of Heat and Mass Transfer, 95, 795–805. doi: 10.1016/j.ijheatmasstransfer.2015.12.061
- [20] Kaniowski, R., & Pastuszko, R. (2021). Pool boiling of water on surfaces with open microchannels. Energies, 14, 3062. doi:10.3390/en14113062
- [21] Misale, M., & Bocanegra, J.A. (2023). Experiments and qualitative analysis by artificial neural network approach on pool boiling of FC-72 on finned surfaces confined by an unheated horizontal wall. International Journal of Thermal Sciences, 187,108105. doi: 10.1016/j.ijthermalsci.2022.108105
- [22] Rainey, K.N., & You, S.M. (2000). Pool boiling heat transfer from plain and microporous, square pin-finned surfaces in saturated FC-72. Journal of Heat Transfer, 122(3), 509–516. doi:10.1115/1.1288708
- [23] Kumar, U., Suresh, S., Thansekhar, M.R., & Babu, D. (2017). Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72. Applied Surface Science, 423, 509–520. doi:10.1016/j.apsusc.2017.06.135
- [24] Yu, C.K., & Lu, D.C. (2007). Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72. International Journal of Heat and Mass Transfer, 50, 3624–3637. doi: 10.1016/j.ijheatmasstransfer.2007.02. 003
- [25] Cooke, D., & Kandlikar, S.G. (2012). Effect of open microchannel geometry on pool boiling enhancement. International Journal of Heat and Mass Transfer, 55, 1004–1013.doi: 10.1016/j.ijheatmasstransfer.2011.10. 010
- [26] Gouda, R.K., Pathak, M., Khan, & Mohd., K. (2018). Pool boiling heat transfer enhancement with segmented finned microchannels structured surface. International Journal of Heat and Mass Transfer, 127, 39–50. doi: 10.1016/j.ijheatmasstransfer.2018.06.115
- [27] Walunj, A., & Sathyabhama, A. (2018). Comparative study of pool boiling heat transfer from various microchannel geometries. Applied Thermal Engineering, 128, 672–683. doi: 10.1016/j.applthermaleng.2017.08.157
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-310acb50-9bc2-41d2-8d06-fbdb31cf2020