PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis of three sides solar air heater having roughness elements as a combination of multiple-v and transverse wire on the absorber plate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Artificial roughness has been found to enhance the thermal performance from the collector to air in the solar air heater duct. This paper presents the results of experimental investigation on thermal performance of three sides solar air heater roughened with combination of multiple-v and transverse wire. The range of variation of system and operating parameters is investigated within the limits of relative roughness pitch of 10−25, relative roughness height of 0.018 −0.042, angle of attack of 30°−75° at varying flow Reynolds number in the of range of 3000−12000 for fixed value of relative roughness width of 6. The augmentation in fluid temperature flowing under three side’s roughened duct is found to be 36.57% more than that of one side roughened duct. The maximum thermal efficiency is obtained at relative roughness pitch of 10 and relative roughness height of 0.042, and angle of attack of 60°. The augmentation in thermal efficiency of three sides over those of one side roughened duct is found to be 46−57% for varying values of relative roughness pitch, 38−50% for varying values of relative roughness height, and 40−46% for varying values of angle of attack.
Rocznik
Strony
125--146
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr., wz.
Twórcy
  • National Institute of Technology, Jamshedpur Jharkhand 831014, India
  • National Institute of Technology, Jamshedpur Jharkhand 831014, India
Bibliografia
  • [1] Bergles A.E.: ExHFT for fourth generation heat transfer technology. Exp. Therm. Fluid Sci. 26(2002), 4, 335–344.
  • [2] Bergles A.E.: New frontiers in enhanced heat transfer advances in enhanced heat transfer. In: Manglik, R.M. et al. (Eds.). ASME, New York, NY, (2000), 1–8.
  • [3] Han J.C., Zhang Y.M., Lee C.P.: Augmented heat transfer in square channels with parallel, crossed and V-shaped angled ribs. J. Heat Trans-T. ASME 113(1991), 3, 590–596.
  • [4] Han J.C., Zhang Y.M.: High performance heat transfer ducts with parallel broken and V-shaped broken ribs. Int. J. Heat Mass Tran. 35(1992), 2, 513–523.
  • [5] Wright L.M., Fu W.L., Han J.C.: Thermal performance of angled, V-shaped and W-shaped rib turbulators in rotating rectangular cooling channels (AR = 4:1). J. Turbomach. 126(2004), 4, 604–614.
  • [6] Prasad K., Mullick S.C.: Heat transfer characteristics of a solar air heater used for drying purposes. Appl. Energy 13(1983), 2, 83–93.
  • [7] Gupta D.: Investigations on fluid flow and heat transfer in solar air heaters with roughened absorbers. PhD thesis. University of Roorkee, 1993.
  • [8] Saini R.P., Saini J.S.: Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element. Int. J. Heat Mass Tran. 40(1997), 4, 973–986.
  • [9] Karwa R.: Investigation of thermo-hydraulic performance of solar air heaters having artificially roughened absorber plate. PhD thesis, University of Roorkee,1997.
  • [10] Prasad B.N., Saini J.S.: Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Sol. Energy 41(1988), 6, 555–560.
  • [11] Cortes A., Piacentini R.: Improvement of the efficiency of a bare solar collector by means of turbulence promoters. Appl. Energy 36(1990), 4, 253–261.
  • [12] Webb R.L.: Heat transfer and friction in tubes with repeated rib roughness. Int J. Heat Mass Tran. 14(1971), 4, 601–617.
  • [13] Varun, Saini R.P., Singal S.K.: Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on the absorber plate. Renew. Energ. 33(2008), 6, 1398–1405.
  • [14] Deo N.S., Chander S., Saini J.S.: Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs. Renew. Energ. 91(2016), 484–500.
  • [15] Kumar S.T., Mittal V., Thakur N.S., Kumar A.: Heat transfer and friction factor correlations for rectangular solar air heater duct having 60◦ inclined continuous discrete rib arrangement. Brit. J. Appl. Sci. Technol. 1(2011), 3, 67–93.
  • [16] Bopche Santosh B., Tandale Madhukar S.: Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. Int. J. Heat. Mass Tran. 52(2009), 11–12, 2834–2848.
  • [17] Saini S.K., Saini R.P.: Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Sol. Energy 82(2008), 12, 1118–1130.
  • [18] ASHRAE Standard 93–77.: Methods of testing to determine the thermal performance of solar collectors. New York 1977.
  • [19] Holman J.P.: Experimental Method for Engineers. McGraw Hill. New York 2007.
  • [20] Hans V.S., Saini R.P., Saini J.S.: Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs. Sol. Energy 84(2010), 6, 898–911.
  • [21] Kumar D., Prasad L.: Analysis on optimal thermohydraulic performance of solar air heater having multiple V-shaped wire rib roughness on absorber plate. Int. Energy J. 18(2018), 2, 153–170.
  • [22] Turkyilmazoglu M., Pop I.: Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. Int. J. Heat Mass Tran. 59(2013), 167–171.
  • [23] Fetecau C., Hayat T., Corina Fetecau.: Steady-state solutions for some simple flows of generalized Burgers fluids. Int. J. Non-linear Mech. 41(2006), 8, 880–887.
  • [24] Liu X., Lienhard J.H., Lombara J.S.: Convective heat transfer by impingement of circular liquid jets. J. Heat Trans-T. ASME 113(1991), 3, 571–582.
  • [25] Tong A.Y.: A numerical study on the hydrodynamics and heat transfer of a circular liquid jet impinging onto a surface. Numerical. Heat Tr. A-Appl. 44(2003), 1, 1–19.
  • [26] Maithani R., Saini J.S.: Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with V-ribs with symmetrical gaps. Exp.Therm. Fluid Sci. 70(2016), 220–227.
  • [27] Layek A., Saini J.S., Solanki S.C.: Second law optimization of a solar air heater having chamfered rib-groove roughness on absorber plate. Renew. Energ. 32(2007), 12, 1967–1980.
  • [28] Karmare S.V., Tikekar A.N.: Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. Int. J. Heat Mass Tran. 50(2007), 21–22, 4342–4351.
  • [29] Jaurker A.R., Saini J.S., Gandhi B.K.: Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness. Sol. Energy 80(2006), 8, 895–907.
  • [30] Tanda G.: Performance of solar air heater ducts with different types of ribs on the absorber plate. Energy 36(2011), 11, 6651–6660.
  • [31] Lanjewar A., Bhagoria J.L., Sarviya R.M.: Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-rib roughness. Exp. Therm. Fluid Sci. 35(2011), 6, 986–995.
  • [32] Fabbri M., Dhir V.K.: Optimized heat transfer for high power electronic cooling using arrays of microjets. J. Heat Trans-T. ASME 127(2005), 7, 760–769.
  • [33] Muszyński T., KoziełS.M.: Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator. Arch. Thermod. 37(2016), 3, 45–62.
  • [34] Robinson A.J., Schnitzler E.: An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer. Exp. Therm. Fluid Sci. 32(2007), 1, 1–13.
  • [35] Choo K., Friedrich B.K., Glaspell A.W., Schilling K.A.: The influence of orifice-to-plate spacing on heat transfer and fluid flow of submerged jet impingement. Int. J. Heat Mass Tran. 97(2016), 66–69.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31093083-5764-47f6-8300-0859da12f0e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.