PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strain measurement based on fixed wavelength transmission of tapered long-period fiber grating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the relationship between transmission intensity and strain based on tapered long-period fiber grating at a fixed wavelength. In experiments, tapered long-period fiber grating was prepared by the electric melting method. Experimental results show that two resonance peaks appeared at 1482 and 1537 nm, respectively. Here is the elaboration of the relationship between the resonant wavelength and the strain, its wavelength-strain sensitivity is 20 pm/με, and the linearity was negative. Then our next study was about the relationship between transmission intensity and strain at a fixed wavelength. The results show that the transmission intensity at a fixed wavelength is related to the exponent with strain. The coupled-mode theory is applied to simulate the relationship between fixed wavelength and strain. The simulation results matched the experimental results. Two fixed wavelength transmission intensity ratio was used, and the ratio showed a linear relationship with the strain, and the slope is –0.018 dB/με. Therefore, within the 0.01% resolution of our detector, we could resolve a 0.16 με strain change. We can select the appropriate light source and detector to achieve higher measurement accuracy. Thus, there is a great potential in fiber grating strain sensors.
Czasopismo
Rocznik
Strony
511--519
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Key Laboratory of Micro Nano Optoelectronic Devices and Intelligent Perception Systems, School of Electronic Information and Engineering, in Yangtze Normal University, Chongqing, 408100, China
autor
  • Key Laboratory of Micro Nano Optoelectronic Devices and Intelligent Perception Systems, School of Electronic Information and Engineering, in Yangtze Normal University, Chongqing, 408100, China
autor
  • Key Laboratory of Micro Nano Optoelectronic Devices and Intelligent Perception Systems, School of Electronic Information and Engineering, in Yangtze Normal University, Chongqing, 408100, China
autor
  • Key Laboratory of Micro Nano Optoelectronic Devices and Intelligent Perception Systems, School of Electronic Information and Engineering, in Yangtze Normal University, Chongqing, 408100, China
autor
  • Key Laboratory of Micro Nano Optoelectronic Devices and Intelligent Perception Systems, School of Electronic Information and Engineering, in Yangtze Normal University, Chongqing, 408100, China
Bibliografia
  • [1] HILL K.O., FUJII Y., JOHNSON D.C., KAWASAKI B.S., Photosensitivity in optical fiber waveguides: application to reflection filter fabrication, Applied Physics Letters 32(10), 1978, pp. 647–649, DOI: 10.1063/1.89881.
  • [2] LEE B., Review of the present status of optical fiber sensors, Optical Fiber Technology 9(2), 2003, pp. 57–79, DOI: 10.1016/S1068-5200(02)00527-8.
  • [3] LEE B.H., LIU Y., LEE S.B., CHOI S.S., JANG J.N., Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index, Optics Letters 22(23), 1997, pp. 1769–1771, DOI: 10.1364/OL.22.001769.
  • [4] LAM D.K.W., GARSIDE B.K., Characterization of single-mode optical fiber filters, Applied Optics 20(3), 1981, pp. 440–445, DOI: 10.1364/AO.20.000440.
  • [5] ZAGORULKO K.A., KRYUKOV P.G., LARIONOV YU.V., RYBALTOVSKY A.A., DIANOV E.M., CHEKALIN S.V., MATVEETS YU.A., KOMPANETS V.O., Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation, Optics Express 12(24), 2004, pp. 5996–6001, DOI: 10.1364/OPEX.12.005996.
  • [6] LAU K.-T., YUAN L., ZHOU L.-M., WU J.S., WOO C.-H., Strain monitoring in FRP laminates and concrete beams using FBG sensors, Composite Structures 51(1), 2001, pp. 9–20, DOI: 10.1016/S0263-8223(00)00094-5.
  • [7] HAO Z., YU X.F., YU Z., BAI Y.F., TIAN Y.Q., DANG S., Method for temperature measurement of taper long-period fiber Bragg grating, Optical Engineering 60(5), 2021, article no. 050501, DOI: 10.1117/1.OE.60.5.050501.
  • [8] SUN B., WEI W., LIAO C.R., ZHANG L., ZHANG Z.X., CHEN M.-Y., WANG Y.P., Automatic arc discharge-induced helical long period fiber gratings and its sensing applications, IEEE Photonics Technology Letters 29(11), 2017, pp. 873–876, DOI: 10.1109/LPT.2017.2693361.
  • [9] RAO Y.-J., RAN Z.-L., LIAO X., DENG H.-Y., Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain, Optics Express 15(22), 2007, pp. 14936–14941, DOI: 10.1364/OE.15.014936.
  • [10] WANG Y.-P., XIAO L., WANG D.N., JIN W., Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity, Optics Letters 31(23), 2006, pp. 3414–3416, DOI: 10.1364/OL.31.003414.
  • [11] ZHOU D.-P., WEI L., LIU W.-K., LIU Y., LIT J.W.Y., Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers, Applied Optics 47(10), 2008, pp. 1668–1672, DOI: 10.1364/AO.47.001668.
  • [12] BAI Y.F., HE Z.L., BAI J.Y., DANG S.H., Axial strain measurement based on dual-wavelength ratio for helical long-period grating, IEEE Sensors Letters 4(11), 2020, article no. 1500803, DOI: 10.1109/LSENS.2020.3035519.
  • [13] REN K., REN L., LIANG J., KONG X., JU H., WU Z., Highly strain and bending sensitive microtapered long-period fiber gratings, IEEE Photonics Technology Letters 29(13), 2017, pp. 1085–1088, DOI: 10.1109/LPT.2017.2702573.
  • [14] HISHIKI K., LI H., YIN S., Phase-shift formed in a tapered long period fiber grating and its application to simultaneous measurements of temperature and refractive-index, Proc. SPIE 8847, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VII, 88470O (25 September 2013), DOI: 10.1117/12.2021684.
  • [15] ALUSTIZA D., MINEO M., RUSSO N.A., Characterization of long period gratings manufactured with fiber optic fusion splicer for sensor development, Latin American Applied Research 51(1), 2021, pp. 21–26, DOI: 10.52292/j.laar.2021.544.
  • [16] MELLE S.M., LIU K., MEASURES R.M., A passive wavelength demodulation system for guided-wave Bragg grating sensors, IEEE Photonics Technology Letters 4(5), 1992, pp. 516–518, DOI: 10.1109/68.136506.
  • [17] LOBO RIBEIRO A.B., FERREIRA L.A., TSVETKOV M., SANTOS J.L., All-fibre interrogation technique for fibre Bragg sensors using a biconical fibre filter, Electronics Letters 32(4), 1996, pp. 382–383, DOI: 10.1049/el:19960260.
  • [18] GRUBSKY V., FEINBERG J., Long-period fiber gratings with variable coupling for real-time sensing applications, Optics Letters 25(4), 2000, pp. 203–205, DOI: 10.1364/OL.25.000203.
  • [19] ZHANG C.-L., GONG Y., ZOU W.-L., Y. WU, RAO Y.-J., PENG G.-D., FAN X.D., Microbubble-based fiber optofluidic interferometer for sensing, Journal of Lightwave Technology 35(13), 2017, pp. 2514–2519, DOI: 10.1109/JLT.2017.2696957.
  • [20] BHATIA V., VENGSARKAR A.M., Optical fiber long-period grating sensors, Optics Letters 21(9), 1996, pp. 692–694, DOI: 10.1364/OL.21.000692.
  • [21] LÖFVING B., HÄRD S., Optical switching with two FLC SLMs, Optics Communications 174(1–4), 2000, pp. 81–90, DOI: 10.1016/S0030-4018(99)00711-7.
  • [22] MIZRAHI V., SIPE J.E., Optical properties of photosensitive fiber phase gratings, Journal of Lightwave Technology 11(10), 1993, pp. 1513–1517, DOI: 10.1109/50.249888.
  • [23] ERDOGAN T., Cladding-mode resonances in short- and long-period fiber grating filters, Journal of the Optical Society of America A 14(8), 1997, pp. 1760–1773, DOI: 10.1364/JOSAA.14.001760.
  • [24] EL-DAMAK A.R., CHANG J., JIAN S., XU C., GU X., Dual-wavelength, linearly polarized all-fiber laser with high extinction ratio, IEEE Photonics Journal 5(4), 2013, article no. 1501406, DOI: 10.1109/JPHOT.2013.2276991.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3108cc20-5846-412e-bb0b-79994dde1965
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.