PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geospatial Study on Forest Fire Disasters – A GIS Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The science and technology is reaching to greater heights in recent decades, that the scientists are also not antici-pated that it would change the facet of human life. However, disasters are challenging scientific community and its intensity and numbers of events are increasing in recent years. Disasters are classified into two types, i.e., natural and man-made. Ancient human beings were used fire to cook their food. Once they were habituated to eat cooked food, their digestive system started working properly which resulted in wise thinking. One of the most risky fiascos is fire. Notwithstanding its immediate risk on living souls’, fire consumes woods. Trees that are giving oxygen to people, in this way, trees are viewed as lungs for solid life. Consistently, huge number of rapidly spreading fires happening all around the world they consume forested lands, causing unfriendly environmental and social effects. Early admonition and prompt reactions are the main available resources to battle such kind of calamities. This exploration work centers guileless techniques which are utilized to recognize forest fire susceptibility index (FFSI) and fire examination in Greater Visakhapatnam municipal corporation.
Twórcy
  • Department of CSE, Vignan’s Institute of Information Technology (A), Visakhapatnam, Andhra Pradesh, India
  • Rajiv Gandhi University of Knowledge Technologies, IIIT Srikakulam, Andhra Pradesh 532402, India
  • School of Computer Science Engineering, VIT-AP University, Amaravathi 522237, India
  • Department of CSE, GVP College of Engineering (A), Kommadhi, Visakhapatnam, Andhra Pradesh 530048, India
  • Department of ECE, GITAM deemed to be University, Visakhapatnam, Andhra Pradesh 530045, India
  • Department of CSE, Vignan’s Institute of Information Technology (A), Visakhapatnam, Andhra Pradesh, India
  • Department of CSE, Guntur Engineering College, Guntur, Andhra Pradesh 522019, India
  • Department of CSE, JNTU Kakinada, Andhra Pradesh 533003, India
Bibliografia
  • 1. Pyne, S.J. 2017. Fire in America: a cultural history of wildland and rural fi re. University of Washington Press.
  • 2. Nikiforuk, A. 2011. Empire of the Beetle: how human folly and a tiny bug are killing North America’s great forests. Greystone Books Ltd.
  • 3. Cheney, P., Sullivan, A. (Eds.). 2008. Grassfi res: fuel, weather and fi re behaviour. Csiro Publishing.
  • 4. Satendra, Kaushik, A.D. 2014. Forest Fire Disaster Management. New Delhi: National Institute of Disaster Management, Ministry of Home Aff airs, Government of India.
  • 5. Sharma, P.D., Sharma, P.D. 2012. Ecology and environment. Rastogi Publications.
  • 6. Haddow, G., Bullock, J., Coppola, D.P. 2017. Introduction to emergency management. Butterworth-Heinemann.
  • 7. Tacastacas, R.C. 2011. Value chain integration, cluster cooperation, and sustainable livelihoods: bridging small farmers to high value markets (Doctoral dissertation, University of Missouri-Columbia).
  • 8. Rao, G.N., Rao, P.J., Duvvuru, R. 2016. A drone remote sensing for virtual reality simulation system for forest fires: semantic neural network approach. In: IOP Conference Series: Materials Science and Engineering Sep. IOP Publishing, 149(1), 012011.
  • 9. Manaswini, G., Reddy, C.S. 2015. Geospatial monitoring and prioritization of forest fire incidences in Andhra Pradesh, India. Environmental monitoring and assessment, 187(10), 616.
  • 10. Narayanan, Y. 2015. Animals and urban informality in sacred spaces: bull-calf trafficking in Simhachalam Temple, Visakhapatnam. In Religion and Urbanism. Routledge, 163–181.
  • 11. Gudikandhula N.R. 2018. Fire detection in Kambalakonda Reserved Forest, Visakhapatnam, Andhra Pradesh, India: An Internet of Things Approach. Journal of Materials Today: Proceedings, Elsevier, 5(1), 1162–1168.
  • 12. Rao, G., Narasimha, R., Ramesh, Rajesh, D., Chandra Sekhar D. 2012. An automated advanced clustering algorithm for text classification. International Journal of Computer Science and Technology, 3, 2–4.
  • 13. Rao, G.N., Jagdeeswar Rao P. 2014. A Clustering Analysis for Heart Failure Alert System Using RFID and GPS.” ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India, Springer, Cham, 1.
  • 14. Rao, G.N. 2019. Geo Spatial Study on Fire Risk Assessment in Kambalakonda Reserved Forest, Visakhapatnam, India: A Clustering Approach. Proceedings of International Conference on Remote Sensing for Disaster Management. Springer, Cham.
  • 15. Rao, G.N., Rao, P.J., Duvvuru, R., Beulah, K., Sunkari, V. 2019. Internet of things for wildfire disasters. Conference Proceedings Series on Information and Communications Technology, Taylor & Francis.
  • 16. Rao, G.N., et al. 2016. An enhanced real-time forest fire assessment algorithm based on video by using texture analysis. Perspect. Sci., 8, 618–620.
  • 17. Rao, G.N., Rao, P.J., Duvvuru, R, Beulah, K., Sunkari, V. 2019. Internet of things for wildfire disasters. Conference Proceedings Series on Information and Communications Technology, Taylor & Francis.
  • 18. Duvvuru, R. 2019. Intelligent object tracking in river floods, Andhra Pradesh, India using MOTSC approach. Proc. of International Conference on Remote Sensing for Disaster Management. Springer, Cham.
  • 19. Pradhan, B., Dini Hairi Bin Suliman, M., Arshad Bin Awang, M. 2007. Forest fire susceptibility and risk mapping using remote sensing and geographical information systems (GIS). Disaster Prevention and Management: An International Journal, 16(3), 344–352.
  • 20. Xiaoting, H., Li, N. 2010. Subject information integration of higher education institutions in the context of Web3.0. In: Industrial Mechatronics and Automation (ICIMA), 2nd International Conference on. IEEE, 2, 170–173.
  • 21. Wenger, B. 2010. A framework based on Gaussian mixture models and Kalman filters for the segmentation and tracking of anomalous events in shipboard video.
  • 22. Verde, J.C., Zêzere, J.L. 2010. Assessment and validation of wildfire susceptibility and hazard in Portugal. Natural Hazards and Earth System Sciences, 10(3), 485–497.
  • 23. Satir, O., Berberoglu, S., Donmez, C. 2016. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Natural Hazards and Risk, 7(5), 1645–1658.
  • 24. Littell, J.S., Peterson, D.L., Riley, K.L., Liu, Y., Luce, C.H. 2016. A review of the relationships between drought and forest fire in the United States. Global change biology, 22(7), 2353–2369.
  • 25. Kyzirakos, K., Karpathiotakis, M., Garbis, G., Nikolaou, C., Bereta, K., Papoutsis, I., Kontoes, C. 2014. Wildfire monitoring using satellite images, ontologies and linked geospatial data. Web Semantics: Science, Services and Agents on the World Wide Web, 24, 18–26.
  • 26. Kyzirakos, K., Karpathiotakis, M., Garbis, G., Nikolaou, C., Bereta, K., Sioutis, M., Kontoes, C. 2012. Real time fire monitoring using semantic web and linked data technologies. In: Proceedings of the 2012th International Conference on Posters & Demonstrations Track, 914, 33–36.
  • 27. Jirka, S., Bröring, A., Stasch, C. 2009. Applying OGC Sensor Web Enablement to risk monitoring and disaster management. In: GSDI 11 world conference, Rotterdam, Netherlands.
  • 28. Forest Encyclopaedia Network & Ward, 2001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3102e4d1-a845-476b-99e7-ec8802a1cfa2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.