PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

TEm,1 coaxial modes generator for cold-testing of high power components and devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we describe the development and design procedure of the new kind of coaxial TEm,1 modes generator based on ring resonator with coupling apertures. The generator enables excitation of subsequent TEm,1 modes in a cylindrical waveguide. The proposed design method allows to obtain high purity TEm,1 modes. The angular mode number can be chosen by replacing the plate with coupling apertures. Structure and parameters of the generator was optimized using CST-Microwave Studio. The mode generator was fabricated and checked on the test bench in an anechoic chamber. The measured field distributions confirm excitation of the desired TEm,1 modes. A good agreement between simulations and measurements is obtained. The presented mode generator, operating in non-rotating TEm,1 modes, is easy to fabricate, and suitable for cold-test experiments of high power components and devices.
Rocznik
Strony
art. no. e140467
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
autor
  • Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] D. Wagner, M. Thumm, G. Gantenbein, W. Kasparek, and T. Idehara, “Analysis of a Complete Gyrotron Oscillator Using the Scattering Matrix Description,” Int. J. Infrared Millimeter Waves, vol. 19, pp. 185–194, 1998, doi: 10.1023/A:1022515506809.
  • [2] T. Trzcinski, N. Palka, and M. Szustakowski, “THz spectroscopy of explosive-related simulants and oxidizers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, no. 4, pp. 445–447, Dec. 2011, doi: 10.2478/v10175-011-0056-4.
  • [3] D. Nowak, B. Gal, A. Wlodarska, and K. Granat, “The Influence of Microwave Drying Parameters on the Properties of Synthetic Moulding Sands,” Arch. Foundry Eng., vol. 19, no. 4, pp. 51–54, 2019, doi: 10.24425/afe.2019.129629.
  • [4] D. Nowak, “The Impact of Microwave Penetration Depth on the Process of Heating the Moulding Sand with Sodium Silicate,” Arch. Foundry Eng., vol. 17, no. 4, pp. 115–118, Dec. 2017, doi: 10.1515/afe-2017-0140.
  • [5] K. Rajewska, A. Smoczkiewicz-Wojciechowska, and J. Majka, “Intensification of beech wood drying process using microwaves,” Chem. Process Eng., vol. 40, no. 2, pp. 179–187, 2019, doi: 10.24425/CPE.2019.126110.
  • [6] J. Cieslik, V. Kismereshkin, E. Ritter, A. Savostin, D. Ritter, and N. Nabiyev, “Installation for Concentrated Uniform Heating of Objects by Microwave Radiation,” Int. J. Electron. Telecomm., vol. 66, no. 2, pp. 295–300, 2020, doi: 10.24425/IJET.2020.131877.
  • [7] N.L. Aleksandrov et al., “Selective excitation of high-order modes in circular waveguides,” Int. J. Infrared MillimeterWaves, vol. 13, no. 9, pp. 1369–1385, Sep. 1992, doi: 10.1007/BF01009994.
  • [8] M. Hruszowiec et al., “The Microwave Sources for EPR Spectroscopy,” J. Telecomm. Inf. Technol., no. 2, pp. 18–25, Jul. 2017, doi: 10.26636/jtit.2017.107616.
  • [9] E. Plinski, “Gorky’s Gyrotron Heroes,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1257–1262, 2020, doi: 10.24425/bpasts.2020.135392.
  • [10] T. Rzesnicki et al., “2.2-MW Record Power of the 170-GHz European Preprototype Coaxial-Cavity Gyrotron for ITER,” IEEE Trans. Plasma Sci., vol. 38, no. 6, pp. 1141–1149, Jun. 2010, doi: 10.1109/TPS.2010.2040842.
  • [11] P.J. Castro, J.J. Barroso, R.A. Correa, and M.C.A. Nono, “Cold tests of A 10-GHz gyrotron cavity,” Int. J. Infrared Millimeter Waves, vol. 13, no. 1, pp. 91–104, Jan. 1992, doi: 10.1007/BF01011210.
  • [12] A. Arnold, G. Dammertz, and M. Thumm, “Low power tests on a TE/sub 28.8/-gyrotron mode converter system,” in 25th International Conference on Infrared and Millimeter Waves, Beijing, China, 2000, pp. 185–186, doi: 10.1109/ICIMW.2000.892992.
  • [13] V. Yadav et al., “Cold test of cylindrical open resonator for 42 GHz, 200 kW gyrotron,” Sadhana, vol. 38, no. 6, pp. 1347–1356, Dec. 2013, doi: 10.1007/s12046-013-0156-y.
  • [14] S.G. Kim, D.S. Kim, M.S. Choe, W. Lee, J. So, and E.M. Choi, “Cold testing of quasi-optical mode converters using a generator for non-rotating high-order gyrotron modes,” Rev. Sci. Instrum., vol. 85, no. 10, p. 104709, Oct. 2014, doi: 10.1063/1.4898180.
  • [15] G. Jaworski, A. Francik, M. Nowak, and K. Nowak, “Review of Experimental Verification Methods of Gyrotron Quasi-optical Mode Converters,” J. Telecomm. Inf. Technol., vol. 3, pp. 75–85, Oct. 2020, doi: 10.26636/jtit.2020.141320.
  • [16] M. Thumm, “High-power millimetre-wave mode converters in overmoded circular waveguides using periodic wall perturbations,” Int. J. Electron., vol. 57, no. 6, pp. 1225–1246, Dec. 1984, doi: 10.1080/00207218408938998.
  • [17] M. Buckley and R. Vernon, “Compact quasi-periodic and aperiodic TE/sub 0n/ mode converters in overmoded circular waveguides for use with gyrotrons,” IEEE Trans. Microwave Theory Tech., vol. 38, no. 6, pp. 712–721, Jun. 1990, doi: 10.1109/22.130965.
  • [18] W. Lawson, M. Arjona, B. Hogan, and R. Ives, “The design of serpentine-mode converters for high-power microwave applications,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 5, pp. 809–814, May 2000, doi: 10.1109/22.841875.
  • [19] Z. Wu, H. Li, B. Hu, J. Xu, and T. Li, “Design of a circular TE5,1 mode generator for gyrotrons low-power measurement,” J. Electromagn. Waves Appl., vol. 27, no. 13, pp. 1660–1671, Sep. 2013, doi: 10.1080/09205071.2013.822338.
  • [20] K.H. Yeap, C.Y. Tham, G. Yassin, and K.C. Yeong, “Attenuation in RectangularWaveguides with Finite ConductivityWalls,” Radioengineering, vol. 20, no. 2, p. 7, 2011.
  • [21] M. Pereyaslavets, O. Braz, S. Kern, M. Losert, A. Mobius, and M. Thumm, “Improvements of mode converters for low-power excitation of gyrotron-type modes,” Int. J. Electron., vol. 82, no. 1, p. 11, 1997, doi: 10.1080/002072197136291.
  • [22] A. Kapoor and G. Singh, “Mode classification in cylindrical dielectric waveguides,” J. Lightwave Technol., vol. 18, no. 6, pp. 849–852, Jun. 2000, doi: 10.1109/50.848397.
  • [23] S. Jawla, J.-P. Hogge, S. Alberti, T. Goodman, B. Piosczyk, and T. Rzesnicki, “Infrared Measurements of the RF Output of 170-GHz/2-MW Coaxial Cavity Gyrotron and Its Phase Retrieval Analysis,” IEEE Trans. Plasma Sci., vol. 37, no. 3, pp. 414–424, Mar. 2009, doi: 10.1109/TPS.2008.2011488.
  • [24] M. Losert, J. Jin, and T. Rzesnicki, “RF Beam Parameter Measurements of Quasi-Optical Mode Converters in themWRange,” IEEE Trans. Plasma Sci., vol. 41, no. 3, pp. 628–632, Mar. 2013, doi: 10.1109/TPS.2012.2232942.
  • [25] P.C. Kalaria et al., “Mode purity estimation of the gyrotron RF beam,” in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Mainz, Germany: IEEE, Sep. 2013, pp. 1–2, doi: 10.1109/IRMMW-THz.2013.6665414.
  • [26] T. Ruess et al., “Computer-Controlled Test System for the Excitation of Very High-Order Modes in Highly Oversized Waveguides,” J. Infrared Millimeter Terahertz Waves, vol. 40, no. 3, pp. 257–268, Mar. 2019, doi: 10.1007/s10762-018-0566-3.
  • [27] D. Haas, M. Thumm, and J. Jelonnek, “Calculations on Mode Eigenvalues in a Corrugated Waveguide with Varying Diameter and Corrugation Depth,” J. Infrared Millimeter Terahertz Waves, Apr. 2021, doi: 10.1007/s10762-021-00791-w.
  • [28] D. Haas and M. Thumm, “Design Procedure for a Broadband TE11/HE11 Mode Converter for High-Power Radar Applications,” J. Infrared Millimeter Terahertz Waves, vol. 42, no. 4, pp. 380–390, Apr. 2021, doi: 10.1007/s10762-021-00773-y.
  • [29] S. Dassault. Cst microwave studio. [Online]. Available: https://www.3ds.com/products-services/simulia/products/cst-studiosuite/
  • [30] J. Jin, “Quasi-Optical Mode Converter for a Coaxial Cavity Gyrotron,” Ph.D. dissertation, Institut fur Hochleistungsimpuls und Mikrowellentechnik, Forschungszentrum Karlsruhe GmbH, 2007.
  • [31] A. Francik, G. Jaworski, M. Nowak, and K. Nowak, “Vlasov Launcher Diagrammatic Design Using the RT Method,” J. Telecomm. Inf. Technol., vol. 2, pp. 57–67, Mar. 2021, doi: 10.26636/jtit.2021.150321.
  • [32] P.F. Wacker, “Near-field antenna measurements using a spherical scan: Efficient data reduction with probe correction,” in Inst. Elec. Eng. Conf. Publ. 113 Conf. Precision Electromagn. Measurements, vol. 113, London, Jul. 1974, pp. 286–288.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30feaf9e-2243-4ca7-b45b-7f4a59e2c748
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.