Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Testy stabilizacji zanieczyszczonych osadów jako metoda zrównoważonego zarządzania w rejonie Morza Bałtyckiego
Języki publikacji
Abstrakty
Sediments in ports usually contain very high concentrations of tributyltin (TBT), heavy metals, polycyclic aromatic hydrocarbons (PAHs) and other contaminants. The stabilization/solidification technology would reduce the environmental impact and it may also prove to be cost-effective and sustainable. The Port of Gdynia in Poland serves as a case study to present some of the aspects of the dredged sediments stabilization. By using an echo sounder and digital side sonar the hydrographical measurements were made. On the basis of the analysis of seismic-acoustic records were set the sediment sampling points. 58 sediment samples were collected by using vibro corer and laboratorial analysis was performed on concentrations of trace metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chloro-organic pesticides, tributyltin (TBT) and mineral oil index in accordance with accredited methods. Determined concentrations of analysed parameters indicated heavy pollution in basin VI (close to Hungarian quay) in the Port of Gdynia. The determined content of TBT ranged from 0.89 to 4.40 mg Sn kg-1 d.w, Ʃ 7 PAHs 0.677-9.0 mg kg-1, Ʃ 16PAHs 2.604-14.66 mg kg-1 and Ʃ7 PCBs 0.479-3.693 mg kg-1. The stated concentration of Pb (299 mg kg-1) exceeded the limit value set by Polish law. The content of mineral oil index ranged from 251 to 2904 mg.kg-1. Leaching tests were performed for both the stabilized and unstabilized samples. The results of primary laboratory stabilization tests, the leaching tests and uniaxial compressive strength confirmed that the stabilization/solidification technology can be applied to managing of contaminated dredging sediment. The material obtained as a result of the stabilization process can be used for the construction of quays, roads or car parks.
Osady portowe zazwyczaj zawierają bardzo wysokie stężenia tributylocyny (TBT), metali ciężkich, wielopierścieniowych węglowodorów aromatycznych (WWA) i innych zanieczyszczeń. Technologia stabilizacji zanieczyszczonych osadów może pomóc zredukować negatywny wpływ jaki wywierają one na środowisko. Badania nad zastosowaniem technologii stabilizacji urobku czerpalnego przeprowadzono w Porcie Gdynia. Punkty poboru próbek osadów dennych zostały wyznaczone na podstawie pomiarów hydrograficznych wykonanych echosondą i sonarem bocznym. Za pomocą vibro sondy zostało pobranych 58 próbek osadów. Przy zastosowaniu akredytowanych metod przeprowadzono badania zawartości metali śladowych, wielopierścieniowych węglowodorów aromatycznych (WWA), polichlorowanych bifenyli (PCB), pestycydów chloroorganicznych, trójbutylocyny (TBT) oraz indeksu oleju mineralnego Uzyskane wyniki wskazały zanieczyszczenie osadów w basenie portowym nr VI przy nabrzeżu Węgierskim. Oznaczona zawartość zanieczyszczeń wahała się od 0,89 do 4,40 mg kg-1 Sn s.m. dla TBT, Ʃ 7 WWA 0,677-9,0 mg kg-1 s.m., Ʃ 16WWA 2,604-14,66 kg-1 s.m. i Ʃ 7 PCB 0,479-3,693 kg-1 s.m. Wartość indeksu oleju mineralnego wahała się w zakresie od 251 do 2904 mg. kg-1 s.m. Natomiast stężenie Pb (299 mg kg-1 s.m.) przekroczyło wartość graniczną określoną przez polskie prawodawstwo Testy wymywania prowadzono zarówno dla stabilizowanych, jak i dla nie ustabilizowanych próbek. Wstępne wyniki badań laboratoryjnych stabilizacji, testy wymywania i siły ściskania potwierdzają, że technologia stabilizacji może być stosowana do zagospodarowania zanieczyszczonego urobku. Materiał uzyskany w wyniku stabilizacji może być stosowany do budowy nabrzeży, dróg lub parkingów.
Wydawca
Czasopismo
Rocznik
Tom
Strony
11--24
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Instytut Morski w Gdańsku, Laboratorium Zakładu Ochrony Środowiska, ul. Długi Targ 41/42, 80-830 Gdańsk
autor
- Instytut Morski w Gdańsku, Laboratorium Zakładu Ochrony Środowiska, ul. Długi Targ 41/42, 80-830 Gdańsk
autor
- Instytut Morski w Gdańsku, Laboratorium Zakładu Ochrony Środowiska, ul. Długi Targ 41/42, 80-830 Gdańsk
autor
- Instytut Morski w Gdańsku, Laboratorium Zakładu Ochrony Środowiska, ul. Długi Targ 41/42, 80-830 Gdańsk
autor
- Instytut Morski w Gdańsku, Laboratorium Zakładu Ochrony Środowiska, ul. Długi Targ 41/42, 80-830 Gdańsk
autor
- Swedish Geotechnical Institute, Department of Geotechnical Design and Landslide Safety, Olaus Magnus väg 35, 581 93 Linköping, Sweden
autor
- Ramboll Analytics, Kilterinkuja 2, FI-01600 Vantaa, Finland
Bibliografia
- [1] Oren, A., Aizenshtat, Z. & Chefetz, B. (2006). Persistent organic pollutants and sedimentary organic matter properties: a case study in the Kishon River. Israel. Environ. Pollut. 141: 265–274.
- [2] HELCOM (2010a). Hazardous substances in the Baltic Sea - An integrated thematic assessment of hazardous substances in the Baltic Sea, Baltic Sea Environment Proceedings No. 120B, Helsinki Commission, Baltic Marine Environment Protection Commission.
- [3] HELCOM (2010b). Ecosystem Health of the Baltic Sea 2003-2007, HELCOM Initial Holistic Assessment Baltic Sea Environment Proceedings No. 122, Helsinki Commission, Baltic Marine Environment Protection Commission.
- [4] Biselli, S., Bester, K., Hühnerfuss, H. & Fent, K. (2000). Concentrations of the antifouling compound Irgarol 1051 and of organotins in water and sediments of German North and Baltic Sea marinas. Mar. Pollut. Bull. 40(3): 233–243.
- [5] Eklund, B., Elfström, M., Gallego, I., Bengtsson, B.-E. & Breitholtz, M. (2010). Biological and chemical characterization of harbour sediments from the Stockholm area. J. Soils Sed. 10(1): 127–141.
- [6] Falandysz, J., Brzostowski, A., Szpunar, J. & Rodriguez- Pereiro, I. (2002). Butyltins in sediments and threespined stickleback (Gasterosteus aculleatus) from the marinas of the Gulf of Gdansk, Baltic Sea. J. Environ. Sci. Health Part A 37(3): 353–363.
- [7] Falandysz, J., Albanis, T., Bachmann, J., Bettinetti, R., Bochentin, I., et al. (2006). Some chemical contaminant of surface sediments at the Baltic Sea coastal region with special emphasis on androgenic and anti-androgenic compounds. J. Environ. Sci. Health Part A 41(10): 2127–2162.
- [8] Hoch, M. (2001). Organotin compounds in the environment—an overview. Appl. Geochem. 16(7–8): 719–743.
- [9] Radke, B., Łęczyński, L., Wasik, A., Namieśnik, J. & Bolałek, J. (2008a). The content of butyl- and phenyltin derivatives in the sediment from the Port of Gdansk. Chemosphere 73(3): 407–414.
- [10] Radke, B., Staniszewska, M., Wasik, A., Namieśnik, J. & Bolałek, J. (2008b). Organotin compounds in marine sediments. Polish J. Environ. Stud. 17(5): 643–654.
- [11] Senthilkumar, K., Duda, C. A., Villeneuve, D. L., Kannan, K., Falandysz, J., et al. (1999). Butyltin compounds in sediment and fish from the Polish coast of the Baltic Sea. Environ. Sci. Pollut. Res. 6(4): 200–206.
- [12] Strand, J., Jacobsen, J. A., Pedersen, B., & Granmo Å. (2003). Butyltin compounds in sediment and molluscs from the shipping strait between Denmark and Sweden. Environ. Pollut. 124(1): 7–15.
- [13] Staniszewska, M., Burska, B., Sapota, G., Bogdaniuk, M., Borowiec, K., et al. (2011). The relationship between the concentrations and distribution of organic pollutants and black carbon content in benthic sediments in the Gulf of Gdansk, Baltic Sea. Mar. Pollut. Bull. 62: 1464–1475.
- [14] Szpunar, J., Falandysz, J., Schmitt, O. & Obrebska, E. (1997). Butyltins in marine and freshwater sediments of Poland. Bull. Environ. Contam. Toxicol. 58(6): 859–864.
- [15] Evans, S. M. (1999). Tributyltin pollution: The catastrophe that never happened. Mar. Pollut. Bull. 38(8): 629–636.
- [16] Díez, S., Jover, E., Albaigés, J. & Bayona, J. M. (2006). Occurrence and degradation of butyltins and wastewater marker compounds in sediments from Barcelona harbour, Spain. Environment International 32(7): 858–865.
- [17] Heiri, O., Lotter, A.F. & Lemcke, G. (2001). Loss-on-ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25: 101–110.
- [18] Song, Y.F., Jing, X., Fleischmann, S. & Wilke B.M. (2002). Comparative study of extraction methods for the determination of PAHs from contaminated soils and sediments. Chemosphere 48(9): 993–1001.
- [19] Wolska, L. (2002). Miniaturised analytical procedure of determining polycyclic aromatic hydrocarbons and polychlorinated biphenyls in bottom sediments. J. Chromatogr. A 959: 173–180.
- [20] Wolska, L. & Namieśnik, J. (2002). Distribution of pollutants in the Odra river system. Part III. Organic pollutants in bottom sediments. Pol. J. Environ. Stud. 11: 663–668.
- [21] Smith, J.N., Lee, K., Gobeil, C. & Macdonald, R. (2009). Natural rates of sediment containment of PAH, PCB, and metal inventories in Sydney Harbour, Nova Scotia. Sci. Total Environ. 407: 4858–4869.
- [22] Sapota G. (1997). Chlorinated hydrocarbons in sediments from the Vistula Lagoon. Oceanol. Stud. 26(2-3): 61-69.
- [23] Sapota G. (2006). Persistent organic pollutants (POPs) in bottom sediments from the Baltic Sea. Oceanol. and Hydrobiol. Stud. 35(4): 295-306.
- [24] Filipkowska, A., Kowalewska, G., Pavoni, B. & Łęczyński, L. (2011). Organotin compounds in surface sediments from seaports on the Gulf of Gdansk (southern Baltic coast). Environ Monit Assess 182: 455–466. DOI 10.1007/s10661-011-1889-x.
- [25] Champ, M. A. (2000). A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci. Tot. Environ. 258(1–2): 21–71.
- [26] Champ, M. A. (2001). New IMO convention to control harmful antifouling systems on ships. Sea Technology 42(11): 48-51.
- [27] Champ, M. A. (2003). Economic and environmental impacts on ports and harbours from the convention to ban harmful marine anti-fouling systems. Mar. Pollut. Bull. 46: 935–940.
- [28] Gipperth, L. (2009). The legal design of the international and European Union ban on tributyltin antifouling paint: Direct and indirect effects. J. Environ. Manage. 90(S1): S86–S95.
- [29] Baumard, P., Budzinski, H., Garrigues, P., Dizer, H. & Hansen, P.D. (1999). Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and seasonal variations. Mar. Environ. Res. 47: 17–47.
- [30] Leipe, T., Kersten, M., Heise, S., Pohl, Ch., Witt, G., et al. (2005). Ecotoxicity assessment of natural attenuation effects at a historical dumping site in the western Baltic Sea. Mar. Pollut. Bull. 50: 446-459.
- [31] Sapota, G., Wojtasiak, B., Burska, D. & Nowiński, K. (2009). Persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) un surface sediments from selected fjords, tidal plains and lakes of the North Spitsbergen. Polish Polar Res. 30: 59–76.
- [32] Susdalev, S. & Gulbinskas, S. (2010). Assessment of sediment contamination in Klaipeda Port area using long-term monitoring data. 2010 IEEE/OES US/EU Baltic International Symposium (BALTIC). IEEE Catalogue No. CFP10AME-ART, ISBN: 978-1- 4244-9227-5/10/$26.00©IEEE.
- [33] Ussenkov, S.M. (1997). Contamination of harbour sediments in the eastern Gulf of Finland (Neva Bay). Baltic Sea. Environmental Geology 32 (4): 274-280.
- [34] Baca, B.J. (1996). Effects of crude oil and dispersed crude oil in tropical ecosystems. Proc. of the 96 MTS/IEEE Oceans Conference, 23-26 September 1996 (pp. 469-486). Fort Lauderdale, USA. ISBN: 0780335201 ISBN13: 9780780335202 DDC: 551.46.
- [35] Brakstad, O.G & Bonaunet, K. (2006). Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0–5°C) and bacterial communities associated with degradation. Biodegradation 17: 71–82.
- [36] Maijala, A. (2006). Review of the state-of-the-art of cement stabilisation. Ramboll Finland Oy Report, pp.50.
- [37] Hansen, J.B., Gamst, J., Laine-Ylijoki, J., Wahlström, M., Larsson, L., et al. (2005). A framework for using leaching test for non-volatile organic compounds. NORDTEST Nordic Innovation Centre, ISSN 0283-7234 (pp.76), http://www. nordicinnovation.net
- [38] Comans, R.N.J., Roskam, G., Oosterhoff, A., Shor, L., Wahlström, M., et al. (2001). Development of standard leaching tests for organic pollutants in soils, sediments and granular waste materials. EU-project. Naturvårdsverket, Stockholm, ISBN 91-620-5557- 7.pdf, ISSN 0282-7298.
- [39] Enell, A., Reichenberg, F., Warfvinge, P. & Ewald, G. (2004). A column method for determination of leaching of polycyclic aromatic hydrocarbons from aged contaminated soil. Chemosphere. 54: 707-715.
- [40] Gamst, J., Kjeldsen, P., Hansen, J.B., Broholm, K. & Christensen, T.H. (2003). Leaching of PAH’s from soil: Comparison of two conceptually different column tests and a batch tests. In Halm, D. & Grathwohl, P. (Eds.): Proceedings of the 2nd International Workshop on Groundwater Risk Assessment at Contaminated Sites (GRACOS) and Integrated Soil and Water Protection (SOWA), 20-21 March 2003 (pp. 173-177). Tübingen, Germany.
- [41] Hansen, J.B., Grøn, C., Hjelmar, O., Asmussen, O., Klem, S., et al. (2004). Leaching Tests for Non-Volatile Organic Compounds – Development and Testing. Report for NORDTEST, DHI Water & Environment, No. 1643-0
- [42] The European Waste Catalogue (EWC), Commission Decision 2000/532/EC
- [43] Sanchez, F. (2006). Leaching from granular waste materials used in highway infrastructures during infiltration coupled with freezing and thawing. Final Report of The Recycled Material Resource Center (RMRC) project # 29, University of New Hampshire.
- [44] Townsend, T.G. (1998). Leaching characteristics of Asphalt road waste. State University System of Florida, Report #98-2.
- [45] Sustainable Management of Contaminated Sediments. Guideline (2013). EU project Sustainable Management of Contaminated Sediments in the Baltic Sea (SMOCS), within The Baltic Sea Region programme 2007–2013 (#039), http://www. smocs.eu.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30fb344d-8d79-44bb-8bb6-848d6ec94aee