PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simple and affordable powering circuit for IoT sensor nodes with energy harvesting

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a circuit structure that can be used for powering an IoT (Internet of Things) sensor node and that can use energy just from its surroundings. The main advantage of the presented solution is its very low cost that allows mass applicability e.g. in the IoT smart grids and ubiquitous sensors. It is intended for energy sources that can provide enough voltage but that can provide only low currents such as piezoelectric transducers or small photovoltaic panels (PV) under indoor light conditions. The circuit is able to accumulate energy in a capacitor until a certain level and then to pass it to the load. The presented circuit exhibits similar functionality to a commercially available EH300 energy harvester (EH). The paper compares electrical properties of the presented circuit and the EH300 device, their form factors and costs. The EH circuit’s performance is tested together with an LTC3531 buck-boost DC/DC converter which can provide constant voltage for the following electronics. The paper provides guidelines for selecting an optimal capacity of the storage capacitor. The functionality of the solution presented is demonstrated in a sensor node that periodically transmits measured data to the base station using just the power from the PV panel or the piezoelectric generator. The presented harvester and powering circuit are compact part of the sensor node’s electronics but they can be also realized as an external powering module to be added to existing solutions.
Rocznik
Strony
575--587
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Czech Technical University in Prague, Department of Microelectronics, Technická 2 St., 166 27 Prague 6, Czech Republic
Bibliografia
  • [1] Dziadak, B., Makowski, Ł., & Michalski, A. (2016). Survey of energy harvesting systems for wireless sensor networks in environmental monitoring. Metrology and Measurement Systems, 23(4), 495-512. https://doi.org/10.1016/10.1515/mms-2016-0053
  • [2] Verma, A., Prakash, S., Srivastava, V., Kumar, A., & Mukhopadhyay, S. C. (2019). Sensing, Controlling, and IoT Infrastructure in Smart Building: A review. IEEE Sensors Journal, 19(20), 9036-9046. https://doi.org/10.1109/JSEN.2019.2922409
  • [3] Wang, Y., Rajib, S. S. M., Collins, C., & Grieve, B. (2018). Low-Cost Turbidity Sensor for Low-Power Wireless Monitoring of Fresh-Water Courses. IEEE Sensors Journal, 18(11), 4689-4696. https://doi.org/10.1109/JSEN.2018.2826778
  • [4] Li, J., Reiffs, A., Parchatka, U., & Fischer, H. (2015). In situ measurements of atmospheric CO and its correlation with NOx and O3 at a rural mountain site. Metrology and Measurement Systems, 22(1), 25-38. https://doi.org/10.1515/mms-2015-0001
  • [5] Labouret, A., & Villoz, M. (2010). Solar Photovoltaic Energy (Let Renewable Energy) (4th ed.). The Institution of Engineering and Technology.
  • [6] Chong, Y. W., Ismail, W., Ko, K., & Lee, C. Y. (2019). Energy harvesting for wearable devices: A review. IEEE Sensors Journal, 19(20), 9047-9062. https://doi.org/10.1109/JSEN.2019.2925638
  • [7] Leng, F., Tan, C. M., & Pecht, M. (2015). Effect of temperature on the aging rate of Li ion battery operating above room temperature. Scientific reports, 5, 12967. https://doi.org/10.1038/srep12967
  • [8] Wang, H., Xia, D., Si, N., Tao, Z., Fu, Y., Xiao, H., ... & Dena, S. (2018, August). Impact of Ambient Temperature on the Consistency of Lithium ion Batteries. Proceedings of the 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), China, 763-766. https://doi.org/10.1109/SDPC.2018.8664960
  • [9] Kuparowitz, M., Sedlakova, V., & Grmela, L. (2017). Leakage Current Degradation Due to Ion Drift and Diffusion in Tantalum and Niobium Oxide Capacitors. Metrology and Measurement Systems, 24(2), 255-264. https://doi.org/10.1515/mms-2017-0034
  • [10] Advanced Linear Devices, Inc. (2015). EH300/301 EPAD®ENERGY HARVESTING™ MODULES. [Datasheet, Vers. 2.2]. http://www.aldinc.com/pdf/EH300.pdf
  • [11] Vishay Intertechnology, Inc. (2020). SiP32431DN, SiP32431DR, SiP32432DN, SiP32432DR. [Datasheet, Rev. G], https://www.vishay.com/docs/66597/sip32431.pdf
  • [12] Texas Instruments Inc. (2018). REF1112 10ppm/°C, 1-μA, 1.25-V Shunt Voltage Reference. [Datasheet, Rev. D]. http://www.ti.com/lit/ds/symlink/ref1112.pdf
  • [13] Texas Instruments Inc. (2019). TLV703x and TLV704x Small-Size, Nanopower, Low-Voltage Comparators. [Datasheet, Rev. E]. http://www.ti.com/lit/ds/symlink/tlv7031.pdf
  • [14] Nichicon. (2019). Aluminum electrolytic capacitors. [Datasheet]. https://cz.mouser.com/datasheet/2/293/e-wt-30307.pdf
  • [15] Ragni, L. (2012). Unexpected dielectric behavior in aluminum wet electrolytic capacitors. IEEE Transactions on Dielectrics and Electrical Insulation, 19(1), 291-297. https://doi.org/10.1109/TDEI.2012.6148530
  • [16] Galla, S., Szewczyk, A., & Lentka, Ł. (2019). Electrochemical capacitor temperature fluctuations during charging/discharging processes. Metrology and Measurement Systems, 6(1), 23-35. https://doi.org/10.24425/mms.2019.126338
  • [17] Linear Technology Corporation. (2006). LTC3531/LTC3531-3.3/LTC3531-3 200mA Buck-Boost Synchronous DC/DC Converters. [Datasheet, Rev. B]. https://www.analog.com/media/en/technical-documentation/data-sheets/3531fb.pdf.
  • [18] MaxDetect Technology Co., Ltd. Digital relative humidity & temperature sensor RHT03. [Datasheet]
  • [19] Yin, H., Mu, X., Li, H., Liu, X., & Mason, A.J. (2018). CMOS Monolithic Electrochemical Gas Sensor Microsystem Using Room Temperature Ionic Liquid. IEEE Sensors Journal, 18(19), 7899-7906. https://doi.org/10.1109/JSEN.2018.2863644
  • [20] Linx Technologies. (2015). LT Series Transceiver Module Data Guide, [Datasheet]. https://linxtechnologies.com/wp/wp-content/uploads/trm-fff-lt.pdf
Uwagi
1. Research described in the paper has been supported by the project EnSO, Electronic Components and Systems for European Leadership Joint Undertaking in collaboration with the European Union’s H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement no 692482. The research also was partly supported by the 7D - Eurostars grant no 7D19001 - SACON - Smart Access Control for Smart Buildings.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30f86a86-70c2-44c4-9a72-eb8ed6566e3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.