PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green polymers: the future of green industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zielone polimery: przyszłość ekologicznego przemysłu
Języki publikacji
EN
Abstrakty
EN
The term “green polymers” has become popular in the recent years in the context of growing environmental awareness and the need for sustainability. The traditional plastics industry relies mainly on raw materials of petrochemical origin. Initially, the focus was mainly on functionality and production cost, with little consideration for environmental impact. As awareness of the environmental problems associated with plastic waste, greenhouse gas emissions and the depletion of non-renewable raw materials grew, the search for greener alternatives began. There was a demand for materials that would be more environmentally friendly at every stage of their life cycle - from production to use to disposal. The 1980s and 1990s saw the first attempts to create plastics from renewable raw materials, such as cornstarch and cellulose. However, these early forms of bioplastics were often expensive and had limited applications.
PL
Termin "zielone polimery" stał się popularny w ostatnich latach w kontekście rosnącej świadomości ekologicznej i potrzeby zrównoważonego rozwoju. Tradycyjny przemysł tworzyw sztucznych opiera się głównie na surowcach pochodzenia petrochemicznego. Początkowo, skupiano się głównie na funkcjonalności i koszcie produkcji, z niewielkim uwzględnieniem wpływu na środowisko. W miarę jak rosła świadomość problemów ekologicznych związanych z odpadami plastikowymi, emisją gazów cieplarnianych i wyczerpywaniem się surowców nieodnawialnych, zaczęto poszukiwać bardziej ekologicznych alternatyw. Pojawiło się zapotrzebowanie na materiały, które byłyby bardziej przyjazne dla środowiska na każdym etapie ich cyklu życia - od produkcji, przez użytkowanie, aż po utylizację. W latach 80. i 90. XX w. pojawiły się pierwsze próby stworzenia tworzyw sztucznych z surowców odnawialnych, takich jak skrobia kukurydziana czy celuloza. Te wczesne formy bioplastików były jednak często kosztowne i miały ograniczone zastosowanie.
Rocznik
Tom
Strony
15--19
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Department of Dietetics, The University College of Applied Sciences in Chelm, 8B Wojsławicka Street, 22-100 Chełm, Poland
autor
  • Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
Bibliografia
  • [1] European Commission. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe COM (2020) 98 Final; European Commission: Brussels, Belgium, 2020.
  • [2] European Commission - A European Strategy for Plastics in a Circular Economy. Available online: https://ec.europa.eu/environment/waste/plastic_waste.htm (accessed on 20 July 2024).
  • [3] United Nations Sustainable Development Knowledge Platform the 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 20 July 2024).
  • [4] Li, J., Xu, Z. Compound tribo-electrostatic separation for recycling mixed plastic waste. J. Hazard. Mater. 2018, 367, 43-49.
  • [5] Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., AbdulGhani, A. Biodegradable plastic applications towards sustainability: A recent innovations in the green product. Cleaner Engineering and Technology, 2022, 6, 100404.
  • [6] Tiwari, N., Santhiya, D., Sharma, J. G. Microbial remediation of micro-nano plastics: Current knowledge and future trends. Environmental Pollution, 2020, 265, 115044.
  • [7] Brooks, A. L., Wang, S., Jambeck, J. R. The Chinese import ban and its impact on global plastic waste trade. Science advances, 2018, 4(6).
  • [8] Kay, P., Hiscoe, R., Moberley, I., Bajic, L., McKenna, N. Wastewater treatment plants as a source of microplastics in river catchments. Environmental Science and Pollution Research, 2018, 25, 20264-20267.
  • [9] Roex, E., Vethaak, D., Leslie, H., Kreuk, M. D. Potential risk of microplastics in the fresh water environment. STOWA, 2013, Amersfoort.
  • [10] Carr, S. A., Liu, J., Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water research, 2016, 91, 174-182.
  • [11] Plastic Europe. Tworzywa - Fakty 2022. Październik 2022.
  • [12] Kikuchi, Y., Hirao, M., Narita, K., Sugiyama, E., Oliveira, S., Chapman, S., Cappra, C. M. Environmental performance of biomass-derived chemical production: a case study on sugarcane-derived polyethylene. Journal of chemical engineering of Japan, 2013, 46(4), 319-325.
  • [13] Mohsenzadeh, A., Zamani, A., & Taherzadeh, M. J. Bioethylene production from ethanol: a review and techno‐economical evaluation. ChemBioEng Reviews, 2017, 4(2), 75-91.
  • [14] Suarez, A., Ford, E., Venditti, R., Kelley, S., Saloni, D., Gonzalez, R. Is sugarcane-based polyethylene a good alternative to fight climate change? Journal of Cleaner Production, Volume 395, 2023, 136432.
  • [15] Oluwasina, O. O., Olaleye, F. K., Olusegun, S. J., Oluwasina, O. O., & Mohallem, N. D. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. International journal of biological macromolecules, 2019, 135, 282-293.
  • [16] Ilyas, R. A., Sapuan, S. M., Ishak, M. R., Zainudin, E. S. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate polymers, 2018, 202, 186-202.
  • [17] Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Abral, H., Ishak, M. R., Zainudin, E. S., Atigah, A.,Atikah, A.,Syafri, A.,Asrofi, M., Jumaidin, R. (2020). Thermal, biodegradability and water barrier properties of bio-nanocomposites based on plasticised sugar palm starch and nanofibrillated celluloses from sugar palm fibres. Journal of Biobased Materials and Bioenergy, 2020, 14(2), 234-248.
  • [18] Khan, B.; Niazi, M.B.K.; Samin, G.; Jahan, Z. Thermoplastic Starch: A Possible Biodegradable Food Packaging Material - A Review. J. Food Process Eng., 2016, 40, e12447.
  • [19] Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy, 2017, 7, 56.
  • [20] Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Effect of Plasticizer Type and Concentration on Dynamic Mechanical Properties of Sugar Palm Starch–Based Films. Int. J. Polym. Anal. Charact., 2015, 20, 627-636.
  • [21] Ren, J.; Zhang, W.; Lou, F.; Wang, Y.; Guo, W. Characteristics of starch-based films produced using glycerol and 1-butyl-3-methylimidazolium chloride as combined plasticizers. Starch-Stärke, 2016, 69, 1600161.
  • [22] Patil, T. V., Patel, D. K., Dutta, S. D., Ganguly, K., Santra, T. S., Lim, K. T. Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications. In Bioactive Materials, 2022, (Vol. 9).
  • [23] Zinge, C., Kandasubramanian, B. Nanocellulose based biodegradable polymers. In European Polymer Journal, 2020, (Vol. 133).
  • [24] Perdani, C. G., and S. Gunawan. A short review: Nanocellulose for smart biodegradable packaging in the food industry. IOP Conference Series: Earth and Environmental Science. Vol. 924. No. 1. IOP Publishing, 2021.
  • [25] Khatami, K., Perez-Zabaleta, M., Owusu-Agyeman, I., Cetecioglu, Z. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? In Waste Management, 2021, (Vol. 119).
  • [26] Teixeira, S., Eblagon, K. M., Miranda, F., R. Pereira, M. F., Figueiredo, J. L. Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications C, 2021, 7(2).
  • [27] Ali, W., Ali, H., Gillani, S., Zinck, P., Souissi, S. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. In Environmental Chemistry Letters, 2023, Vol. 21, Issue 3.
  • [28] Ragaert, K., Delva, L., Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste management, 2017, 69, 24-58.
  • [29] Hansen, A. P., da Silva, G. A., Kulay, L. Evaluation of the environmental performance of alternatives for polystyrene production in Brazil. Science of the Total Environment, 2015, 532, 655-668.
  • [30] Barletta, M., Aversa, C., Ayyoob, M., Gisario, A., Hamad, K., Mehrpouya, M., Vahabi, H. Poly (butylene succinate)(PBS): Materials, processing, and industrial applications. Progress in Polymer Science, 2022, 132, 101579.
  • [31] İslamova, G., Çetinkaya, Ş. E., Derkuş, B., Seval, M. M., Dökmeci, F. Polikaprolakton (PCL) ve Jelatin Metakrilat (GelMA) Doku Mühendisliği İskelesi Üzerinde Mezenkimal Kök Hücrelerinin Tutunması ve Canlılık Testi (Pilot Çalışma). In Turkiye Klinikleri Scientific Meetings, 2023, Vol. 5, No. 1, pp. 24-26.
  • [32] Yılmaz, B. Yumuşak Doku Onarımı için Poli (l-laktid-ko-kaprolakton) Biyobozunur Cerrahi Yamaların 3B Baskısı ve Jelatin Kaplanması. International Journal of Engineering Research and Development, 2023, 15(2), 860-871.
  • [33] Göktaş, M., Aykaç, C. Poli (s-kaprolakton)-ö-poli (akrilamid) blok kopolimerlerinin sentezi ve karakterizasyonu. Journal of the Institute of Science & Technology/Fen Bilimleri Estitüsü Dergisi, 2020, 10(2).
  • [34] Warren, K. Polikaprolaktona (PCL)-mxēna elektrovērptu membrānu, kā antibakteriālu brūču pārsiešanas līdzekļa efektivitātes un drošuma noteikšana in-vitro, 2024.
  • [35] Louw, J. Farzad, S., Görgens, J. F. Polyethylene furanoate: technoeconomic analysis of biobased production. Biofuels, Bioproducts and Biorefining, 2023, 17.1: 135-152.
  • [36] Mendieta, C. M., González, G., Vallejos, M. E., Area, M. C. Bio-polyethylene furanoate (Bio-PEF) from lignocellulosic biomass adapted to the circular bioeconomy. BioResources, 17(4), 2022, 7313-7337.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30f036c2-09de-43c5-a21b-094122cce7a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.