PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cost-Benefit Analysis of Using Recycled Coarse Aggregate In Plain and Fiber Reinforced Concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The tendency of demolition has increased to improve economic gains, functional and structural performance, and unloading expenses due to the inaccessibility of an appropriate site in a nearby area. As a result, effective utilization of construction and demolition waste materials in the form of a Recycled Coarse Aggregate of 20 mm & 10 mm is possible while conserving non-renewable natural resources. Even though recycled coarse aggregate (RCA) is a cost-effective material that provides solutions to solid waste management, it is also viewed as second-rate in terms of its basic properties compared to natural coarse aggregate (NCA). This study attempted to design two mix proportions for natural aggregate concrete (NAC) and recycled aggregate concrete (RAC). RAC supplemented with Hooked Steel Fibers at a rate of 0%, 0.25%, 0.5%, and 0.75% per cubic metre. Compressive strength considered a benefit parameter, whereas the state schedule of rates (SSR), 2020-21, was used to estimate cost. The experimental results discovered that RAC with 0.25% steel fibres(SF) per cubic metre found 7.27% less compressive strength results than NAC in Mix-1 of M25 grade, whereas it is 11.64% less compared to NAC of Mix-2 of M40 grade at 28 days, respectively. This related decrease in compressive strength compared to NAC is within the acceptable limit of Indian Standards. At the same time, cost analysis of RAC with 0.25% steel fibres per cubic metre observed 1.26% and 2.16% more than NAC of M25 & M40. It revealed that 0.25% SF per metre cube in RAC provides an economically viable solution in terms of cost and benefits compared to NAC of a similar mixture.
Twórcy
  • Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded
Bibliografia
  • 1. Behera M., Bhattacharyya S.K., Minocha A.K., Deoliya R., Maiti, S. Recycled aggregate from C & D waste & its use in concrete – A breakthrough towards sustainability in the construction sector: A review. Construction and Building Materials. 2014;68:501–516. DOI: 10.1016/j.conbuildmat.2014.07.003 2014
  • 2. Kumatha R., Vijai K. Strength of Concrete Incorporating Aggregates Recycled from Demolition Waste. Asian Research Publishing Network Journal of Engineering and Applied Sciences. 2010;5:64–71.
  • 3. Hashempour, H., Heidari H., Jounaghani M.S. The Efficiency of Hybrid BNN-DWT for predicting the Construction and Demolition Waste Concrete Strength. International Journal of Engineering, Transactions: B Applications. 2020;33:1544–1552. DOI:10.5829/IJE.2020.33.08B.12
  • 4. Rao A., Jha K.N., Misra S. Use of aggregates from recycled construction and demolition waste in concrete. Resource Conservation Recycling. 2006;50(1):71–81. DOI:10.1016/j.resconrec.2006.05.010
  • 5. Tam V., Economic comparison of concrete recycling: a case study approach. Resources, Conservation and Recycling. 2007;62:821–828. DOI: 10.1016/j.resconrec.2007.12.001
  • 6. Hansen T.C., Narud H. Recycled Concrete and Fly ash makes Calcium Silicate Bricks Cement and Concrete Research. 1983;13:507–510. DOI:10.1016/0008-8846(83)90009-1
  • 7. Bairagi, N.K., Ravande, K., Pareek, V.K. Behaviour of concrete with different proportions of natural and recycled aggregates. Resources, Conservation and Recycling. 1993;9(1–2):109–126. DOI:10.1016/0921-3449(93)90036-F
  • 8. Padmini A.K., Ramamurthy K., Mathews M.S. Influence of parent concrete on the properties of recycled aggregate concrete. Construction and Building Materials. 2009;23(2): 829–836. DOI:10.1016/j. conbuildmat.2008.03.006
  • 9. Rao M.C., Bhattacharyya S.K., Barai S.V. Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures. 2011;44(1):205– 220. DOI:10.1617/s11527-010-9620-x
  • 10. Lahus O., Lillestol B., Hauck C. Use of Recycled Aggregate in Normal Concrete in Norway. Norwegian Building Research Institute. 2000;1–6. https:// www.irbnet.de/daten/iconda/CIB4276.pdf
  • 11. Banthia N., Gupta P., Yan C., Morgan D.R. How tough is Fibre Reinforced Shotcrete? Part1, Beam Tests. Journal of Concrete International. 1999;59–62.
  • 12. Akinkurolere O.O. Experimental Investigation on the Influence of Steel Fiber on the Compressive and Tensile Strength of Recycled Aggregate Concrete’, Medwell Journals. 2010;264–268. DOI: 10.3923/ jeasci.2010.264.268
  • 13. Xiao J., Li J., Zhang C. Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research. 2005;35(6):1187– 1194. DOI: 10.1016/j.cemconres.2004.09.020
  • 14. Heeralal M., Ratish Kumar P., Rao Y.V. Flexural Fatigue Characteristics of Steel Fibre Reinforced Recycled Aggregate Concrete (SFRRAC). FACTA Universities, Architecture and Civil Engineering. 2009;7(1):19–33. DOI:10.2298/FUACE0901019H
  • 15. Prathipati T., Rao C.B.K., Dakshina Murthy N.R. Mechanical Behaviour of Hybrid Fiber Reinforced High Strength Concrete with graded fibres. International Journal of Engg., Transactions: B Applications.2020;33:1465–1471. DOI: 10.5829/IJE.2020.33.08B.04
  • 16. Tam V., Mirza O., Senaratne S., Kang W., Kotrayothar D. Recycled Aggregate Concrete: Strength Development and Future Perspectives on Steel Fibres and Cost Benefit Analysis. Challenges. Innovation and Collaboration in Construction & Engineering. Bangkok, Thailand; 2013.
  • 17. Tam V., Mirza O., Senaratne S., Kang W. Sustainable structural material combining recycled aggregate and steel fibres. 3rd World Construction SymposiumColombo, Sri Lanka 2014.
  • 18. Public Works Department, Government of Maharashtra. State Schedule of Rates; 2020-21.
  • 19. Creswell J. Research Design: Qualitative, Quantitative, and Mixed Method Approaches (Fifth Edition). SAGE Publishing; 2003.
  • 20. BIS-10262. Guidelines for concrete mix design proportioning (CED 2: Cement and Concrete). Bureau of Indian Standards; 2009.
  • 21. BIS-456.Indian Standard Plain and Reinforced Concrete Code of Practice. Bureau of Indian Standards; 2000.
  • 22. BIS-383.Coarse and Fine Aggregate for ConcreteSpecification (Third Revision). Bureau of Indian Standards; 2016.
  • 23. BIS-8112. Specifications for 43 Grade Ordinary Portland Cement. Bureau of Indian Standards; 1989.
  • 24. A820-01.Standard Specifications for Steel Fibers for Fiber Reinforced Concrete. ASTM International; 2013.
  • 25. Etxeberria M., Marí A.R., Vázquez E. Recycled aggregate concrete as structural material. Materials and Structures. 2007;40(5):529–541. DOI:10.1617/ s11527-006-9161-5
  • 26. Salem R.M., Burdette E.G. Role of Chemical and Mineral Admixture on Physical Properties and Frost-Resistance of Recycled Aggregate Concrete. ACI Materials Journal. 1998;95(5):558–563. https://trid.trb.org/view/542151
  • 27. Sagoe-Crentsil K.K., Brown T., Taylor A.H. Performance of Concrete Made with Commercially Produced Coarse Recycled Concrete Aggregate. Cement Concrete Research. 2001;31:707–12. DOI:1016/S0008-8846(00)00476-2
  • 28. Gómez-Soberón M.J. Porosity of Recycled Concrete with Substitution of Recycled Concrete Aggregate: an experimental study. Cement Concrete Research. 2002;32:1301–11. DOI:10.1016/s00088846(02)00795-0
  • 29. Senaratne S., Gerace D., Mirza O., Tam V.W.Y. The costs and benefits of combining recycled aggregate with steel fibres as a sustainable, structural material. Journal of Cleaner Production. 2015; 1-10. DOI:10.1016/j.jclepro.2015.10.041
  • 30. Cellini, S.R., Kee, J.E., Cost-effectiveness and cost benefit analysis. John Wiley and Sons; 2010.
  • 31. Johannesson M. The relationship between costeffectiveness analysis and cost benefit analysis. Social Science & Medicine. 1995;41(4):483–489. DOI: 10.1016/0277-9536(94)00353-u
  • 32. Remedios A.P. Concrete Mix Design. Himalaya Publishing House; 2008.
  • 33. Tam V. Economic comparison of concrete recycling: a case study approach. Resources Conservation & Recycling. 2008;62:821–828.
  • 34. AASB. Property, Plant and Equipment. Commonwealth of Australia. 600 Bourke Street, Melbourne, Victoria, Australia 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30ec5650-5c98-4871-8d19-95245cb1ed65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.