PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Thermal Comfort, Productivity and Lighting Conditions in Higher Education Buildings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal comfort and lighting conditions are essential aspects of indoor environmental quality. They are considered to influence the productivity of room users. The paper presents the experimental test results of research conducted in the university educational building of Kielce University of Technology (Central Poland) using anonymous questionnaires and physical measurements of indoor air parameters with a high-precision microclimate meter. It covers the analysis of the subjective assessment of thermal sensations, acceptability and preference, as well as productivity, lighting and air quality in eleven rooms (both lecture rooms and classrooms). The study analyses the impact of the indoor environment (mostly air temperature and illuminance) on the subjective sensations of the respondents they expressed in the questionnaires. The experiments have enabled us to provide valuable insights into developing the proper indoor environmental conditions to maximise room users' comfort and productivity.
Słowa kluczowe
Rocznik
Tom
Strony
30--40
Opis fizyczny
Bibliogr. 31 poz., fot., rys.
Twórcy
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Kielce, Poland
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Kielce, Poland
  • Faculty of Mechanical Engineering, VSB – Technical University of Ostrava, Ostrava-Poruba, Czech Republic
Bibliografia
  • Aghniaey, S., Lawrence, T.M. (2017). Cooling season demand response and the real world, ASHRAE Journal, 59, 68-70.
  • Akimoto, T., Tanabe, S., Yanai, T., Sasaki, M. (2010). Thermal comfort and productivity - Evaluation of workplace envi-ronment in a task conditioned office. Building and Environment, 45(1), 45-50. https://doi.org/10.1016/j.buildenv.2009.06.022
  • Allah, M.Z., Kamar, H.M., Hariri, A., Wong, K.Y. (2023). Investigating adaptive thermal comfort in office settings: A case study in Johor Bahru, Malaysia. Case Studies in Chemical and Environmental Engineering, 8, 100466, https://doi.org/10.1016/j.cscee.2023.100466
  • Amanowicz, Ł., Ratajczak, K., Dudkiewicz, E. (2023). Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings-Literature Review. Energies, 16(4), 1853. https://doi.org/10.3390/en16041853
  • ANSI/ASHRAE Standard 55 (2017). Thermal environmental conditions for human occupancy, Atlanta: American Soci-ety of Heating, Ventilation and Air-conditioning Engineers Inc.
  • Dudkiewicz, E., Fidorów-Kaprawy, N., Szałański, P. (2022). Environmental Benefits and Energy Savings from Gas Ra-diant Heaters' Flue-Gas Heat Recovery. Sustainability, 14, 8013. https://doi.org/10.3390/su14138013
  • Dudkiewicz, E., Laska, M., Fidorów-Kaprawy, N. (2021). Users' Sensations in the Context of Energy Efficiency Mainte-nance in Public Utility Buildings. Energies, 14, 8159. https://doi.org/10.3390/en14238159
  • Elbellahy, S., Alotaibi, B.S., Abuhussain, M.A. (2024). Field measurements of post-operation evaluation of daylighting and thermal comfort in hot and arid climates: A pilot study of three educational buildings on the Najran Universi-ty campus in Saudi Arabia. Journal of Building Engineering, 82, 108174. https://doi.org/10.1016/j.jobe.2023.108174
  • EN 12464-1 (2012). Light and lighting – Lighting of workplaces – Part 1: Indoor workplaces.
  • Homod, R.Z., Mohamed Sahari, K.S., Almurib, H.A.F., Nagi, F.H. (2012). RLF and TS fuzzy model identification of indoor thermal comfort based on PMV/PPD. Building and Environment, 49(1), 141-153. https://doi.org/10.1016/j.buildenv.2011.09.012
  • Hu, X., Li, N., Gu, J., He, Y., Yongga, A. (2023). Lighting and thermal factors on human comfort, work performance, and sick building syndrome in the underground building environment. Journal of Building Engineering, 79, 107878. https://doi.org/10.1016/j.jobe.2023.107878
  • ISO Standard 7730 (2005). Ergonomics of the Thermal Environment – Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; Geneva, Switzerland, 2005.
  • Kim, J., De Dear, R. (2018). Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students. Building and Environment, 127, 13-22.
  • Koshlak, H., Pavlenko, A. (2020). Mathematical model of particle free settling in a vortex apparatus. Rocznik Ochrona Środowiska, 22, 727-734.
  • Kotrys-Działak, D., Stokowiec, K. (2023). Temperature Distribution Analysis on the Surface of the Radiator: Infrared Camera and Thermocouples Results Comparison. Rocznik Ochrona Środowiska, 25, 37-44. https://doi.org/10.54740/ros.2023.005
  • Kramer, T., Garcia-Hansen, V., Omrani, S., Zhou, J., Chen, D. (2023). Personal differences in thermal comfort perception: Observations from a field study in Brisbane, Australia. Building and Environment, 245, 110873. https://doi.org/10.1016/j.buildenv.2023.110873
  • Krawczyk, N., Dębska, L., Piotrowski, J.Zb., Honus, S., Majewski, G. (2023). Validation of the Fanger Model and As-sessment of SBS Symptoms in the Lecture Room. Rocznik Ochrona Środowiska, 25, 68-76. https://doi.org/10.54740/ros.2023.008
  • Latini, A., Giuseppe, E., Di. D’Orazio, M., Perna, C. Di (2021). Exploring the use of immersive virtual reality to assess occupants' productivity and comfort in workplaces: An experimental study on the role of walls colour. Energy & Buildings, 253, 111508. https://doi.org/10.1016/j.enbuild.2021.111508
  • Nogaj, K., Turski, M., Sekret R. (2017). The influence of using heat storage with PCM on inlet and outlet temperatures in substation in DHS. Proc of Int. Conf. on Advances in Energy Systems and Environmental Engineering (ASEE17), Wrocław, Poland, July 2-5, 2017, E3S Web of Conferences, 22, 00124. https://doi.org/10.1051/e3sconf/20172200124
  • Orman, Ł.J. (2014). Boiling heat transfer on meshed surfaces of different aperture. Proc of Int. Conf. on Application of Experimental and Numerical Methods in Fluid Mechanics and Energetics (Slovakia), AIP Conference Proceed-ings, 1608, 169-172. https://doi.org/10.1063/1.4892728
  • Orman, Ł.J., Chatys, R. (2011). Heat transfer augmentation possibility for vehicle heat exchangers. Proc. of 15th Int. Conf. "TRANSPORT MEANS" (Kaunas, Lithuania), 9-12.
  • Pavlenkо, A., Szkarowski, A. (2018). Thermal insulation materials with high-porous structure based on the soluble glass and technogenic mineral fillers. Rocznik Ochrona Środowiska, 20, 725-740.
  • Singh, M.K., Kumar, S., Ooka, R., Rijal, H.B., Gupta, G., Kumar, A. (2018). Status of thermal comfort in naturally venti-lated classrooms during the summer season in the composite climate of India. Building and Environment, 128, 287-304.
  • Stokowiec, K., Wciślik, S., Kotrys-Działak, D. (2023). Innovative Modernisation of Building Heating Systems: The Economy and Ecology of a Hybrid District-Heating Substation. Inventions, 8, 43. https://doi.org/10.3390/inventions8010043
  • Su, X., Yuan, Y., Wang, Z., Liu, W., Lan, L., Lian, Z. (2023). Human thermal comfort in non-uniform thermal environ-ments: A review. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2023.06.012
  • Taib, N.S.M., Zaki, S.A., Rijal, H.B., Razak A.A., Hagishima, A., Khalid, W., Ali, M.S. M. (2022). Associating thermal comfort and preference in Malaysian universities' air-conditioned office rooms under various set-point tempera-tures. Journal of Building Engineering, 54, 104575. https://doi.org/10.1016/j.jobe.2022.104575
  • Tsay, Y.S., Chen, R., Fan, Ch.Ch. (2022). Study on thermal comfort and energy conservation potential of office build-ings in subtropical Taiwan. Building and Environment, 208, 108625. https://doi.org/10.1016/j.buildenv.2021.108625
  • Turski, M., Sekret, R. (2017). A method of determining the thermal power demand of buildings connected to the district heating system with usage of heat accumulation. Proc. of Int. Conf. on Advances in Energy Systems and Environ-mental Engineering (ASEE17) Wrocław, Poland, July 2-5, 2017, E3S Web of Conferences, 22, 00180. https://doi.org/10.1051/e3sconf/20172200180
  • Wang, Z., de Dear, R., Luo, M., Lin, B., He, Y., Ghahramani, A., Zhu, Y. (2018). Individual difference in thermal com-fort: A literature review. Building and Environment, 138, 181-193. https://doi.org/10.1016/j.buildenv.2018.04.040
  • Xie, K., Lee, M., Khalid, R., Zakka, V.G. (2023). The impact of personal environmental control on the performance of thermal systems: Building energy consumption, occupant thermal comfort, and productivity. Energy & Buildings, 298, 113552. https://doi.org/10.1016/j.enbuild.2023.113552
  • Yang, B., Olofsson, T., Wang, F., Lu, W. (2018). Thermal comfort in primary school classrooms: A case study under subarctic climate area of Sweden, Building and Environment, 135, 237-245. https://doi.org/1010.1016/j.buildenv.2018.03.019
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30ea6102-b5c3-4e83-a580-117bb3ecae7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.