Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A core-shell nanocube antenna is proposed to numerically simulate broadband unidirectional scattering. Comparing the scattering of a dielectric nanocube and core-shell nanocube, it is found that the core-shell nanocube has a higher forward/backward ratio and better unidirectional scattering efficiency. In order to further enhance forward scattering efficiency and reduce the side-lobe of scattering, the particle chain of core-shell nanocubes is proposed by arranging multiple nanoparticles. It is possible to achieve better unidirectional scattering over a wide spectral range. In addition, we also numerically studied the effect of the gap between the particles and the radius of the metal core on unidirectional scattering. It is demonstrated that the optimal gap should be selected to achieve ideal unidirectional forward scattering. The unique optical properties of core-shell nanocubes have important practical applications particularly in the fields of nanoantennas, photovoltaic devices, and nanolasers that require reflection suppression.
Czasopismo
Rocznik
Tom
Strony
655--667
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
- Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
autor
- Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
autor
- Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
autor
- Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
autor
- Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
Bibliografia
- [1] ALU A., ENGHETA N., Cloaking a sensor, Physical Review Letters 102(23), 2009, article ID 233901, DOI:10.1103/PhysRevLett.102.233901.
- [2] RUAN Z., FAN S., Superscattering of light from subwavelength nanostructures, Physical Review Letters 105(1), 2010, article ID 013901, DOI:10.1103/PhysRevLett.105.013901.
- [3] CHENCHEN ZHAO, JI CHEN, HANMENG LI, TAO LI, SHINING ZHU, Mode division multiplexed holographyby out-of-plane scattering of plasmon/guided modes, Chinese Optics Letters 16(7), 2018, article ID070901.
- [4] XINGJIE NI, EMANI N.K., KILDISHEV A.V., BOLTASSEVA A., SHALAEV V.M., Broadband light bending with plasmonic nanoantennas, Science 335(6067), 2012, p. 427, DOI:10.1126/science.1214686.
- [5] CHEN W., ZHANG J., PENG B., ÖZDEMIR Ş.K., FAN X., YANG L., Parity-time-symmetric whispering-gallerymode nanoparticle sensor, Photonics Research 6(5), 2018, pp. A23–A30, DOI:10.1364/PRJ.6.000A23.
- [6] SIKDAR D., RUKHLENKO I.D., CHENG W., PREMARATNE M., Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy, Biomedical Optics Express 4(1), 2013, pp.15–31, DOI:10.1364/BOE.4.000015.
- [7] SIKDAR D., RUKHLENKO I.D., CHENG W., PREMARATNE M., Tunable broadband optical responses of substrate-supported metal/dielectric/metal nanospheres, Plasmonics 9(3), 2014, pp. 659–672, DOI:10.1007/s11468-014-9681-8.
- [8] CHOU R.Y., LU G., SHEN H., HE Y., CHENG Y., PERRIAT P., MARTINI M., TILLEMENT O., GONG Q., A hybrid nanoantenna for highly enhanced directional spontaneous emission, Journal of AppliedPhysics 115(24), 2014, article ID 244310, DOI:10.1063/1.4885422.
- [9] WEI LIU, JIANFA ZHANG, BING LEI, HAOTONG MA, WENKE XIE, HAOJUN HU, Ultra-directional forward scattering by individual core-shell nanoparticles, Optics Express 22(13), 2014, pp. 16178–16187, DOI:10.1364/OE.22.016178.
- [10] ALU A., ENGHETA N., Tuning the scattering response of optical nanoantennas with nanocircuit loads, Nature Photonics 2, 2008, pp. 307–310, DOI:10.1038/nphoton.2008.53.
- [11] DAQUAN YANG, FEI GAO, QI-TAO CAO, CHUAN WANG, YUEFENG JI, YUN-FENG XIAO, Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities, Photonics Research 6(2), 2018, pp. 99–108, DOI:10.1364/PRJ.6.000099.
- [12] ATWATER H.A., POLMAN A., Plasmonics for improved photovoltaic devices, Nature Materials 9, 2010, pp. 205–213, DOI:10.1038/nmat2629.
- [13] SIKDAR D., RUKHLENKO I.D., CHENG W., PREMARATNE M., Optimized gold nanoshell ensembles for biomedical applications, Nanoscale Research Letters 8, 2013, pp. 142–146, DOI: 10.1186/1556-276X-8-142.
- [14] XUE HAN, VIET GIANG TRUONG, PRINCE SUNIL THOMAS, SÍLE NIC CHORMAIC, Sequential trapping of single nanoparticles using a gold plasmonic nanohole array, Photonics Research 6(10), 2018, pp. 981–986, DOI:10.1364/PRJ.6.000981.
- [15] ALAVIRAD M., OLIVIERI A., ROY L., BERINI P., Fabrication of electrically contacted plasmonic Schottky nanoantennas on silicon, Chinese Optics Letters 16(5), 2018, article ID 050007.
- [16] MAIER S., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.
- [17] GRAMOTNEV D.K., BOZHEVOLNYI S.I., Plasmonics beyond the diffraction limit, Nature Photonics 4, 2010, pp. 83–91, DOI:10.1038/nphoton.2009.282.
- [18] SHIBANUMA T., ALBELLA P., MAIER S.A., Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas, Nanoscale 8(29), 2016, pp. 14184–14192, DOI:10.1039/C6NR04335F.
- [19] CURTO A.G., VOLPE G., TAMINIAU T.H., KREUZER M.P., QUIDANT R., VAN HULST N.F., Unidirectional emission of a quantum dot coupled to a nanoantenna, Science 329(5994), 2010, pp. 930–933, DOI:10.1126/science.1191922.
- [20] KOSAKO T., KADOYA Y., HOFMANN H.F., Directional control of light by a nano-optical Yagi–Uda antenna, Nature Photonics 4, 2010, pp. 312–315, DOI:10.1038/nphoton.2010.34.
- [21] PAKIZEH T., KALL M., Unidirectional ultracompact optical nanoantennas, Nano Letters 9(6), 2009, pp. 2343–2349, DOI:10.1021/nl900786u.
- [22] EVLYUKHIN A.B., BOZHEVOLNYI S.I., PORS A., NIELSEN M.G., RADKO I.P., WILLATZEN M., ALBREKTSEN O., Detuned electrical dipoles for plasmonic sensing, Nano Letters 10(11), 2010, pp. 4571–4577, DOI:10.1021/nl102572q.
- [23] SHEGAI T., MILJKOVIC V.D., BAO K., XU H., NORDLANDER P., JOHANSSON P., KALL M., Unidirectional broadband light emission from supported plasmonic nanowires, Nano Letters 11(2), 2011, pp. 706–711, DOI:10.1021/nl103834y.
- [24] ZHIPENG LI, FENG HAO, YINGZHOU HUANG, YURUI FANG, NORDLANDER P., HONGXING XU, Directional light emission from propagating surface plasmons of silver nanowires, Nano Letters 9(12), 2009, pp. 4383–4386, DOI:10.1021/nl902651e.
- [25] AOUANI H., MAHBOUB O., BONOD N., DEVAUX E., POPOV E., RIGNEAULT H., EBBESEN T.W., WENGER J., Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations, Nano Letters 11(2), 2011, pp. 637–644, DOI:10.1021/nl103738d.
- [26] MIAN WANG, CHENG YIN, YOUQIAO MA, JUN ZHOU, HANHUA ZHONG, XIANFENG CHEN, Polarization and structure dependent optical characteristics of the three-arm nanoantenna with C3v symmetry and broken symmetry, Chinese Optics Letters 16(5), 2018, article ID 052501.
- [27] BIN ZHUANG, CHENGFANG XU, YI GENG, GUANGZHI ZHAO, HUI CHEN, ZHENGQUAN HE, ZHAOXIN WU,LIYONG REN, Round-trip imaging through scattering media based on optical transmission matrix, Chinese Optics Letters 16(4), 2018, article ID 041102.
- [28] JOHNSON P.B., CHRISTY R.W., Optical constants of the noble metals, Physical Review B 6(12), 1972, pp. 4370–4379, DOI:10.1103/PhysRevB.6.4370.
- [29] BOHREN C.F., HUFFMAN D.R., Absorption and Scattering of Light by Small Particles, Wiley, NewYork, 1983.
- [30] MULHOLLAND G.W., BOHREN C.F., FULLER K.A., Light-scattering by agglomerates: coupled electric and magnetic dipole method, Langmuir 10(8), 1994, pp. 2533–2546, DOI:10.1021/la00020a009.
- [31] MERCHIERS O., MORENO F., GONZALEZ F., SAIZ J.M., Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities, Physical Review A 76(4), 2007, article ID 043834, DOI:10.1103/PhysRevA.76.043834.
- [32] BO FANG, XUFENG JING, QIUFENG, YE, JINHUI CAI, PENGWEI ZHOU, Broadband electromagnetic dipole resonance by the coupling effect of multiple dielectric nanocylinders, Applied Sciences 8(1), 2018, article ID 60, DOI:10.3390/app8010060.
- [33] XINCUI GUI, XUFENG JING, JIANJUN LIU, PENGWEI ZHOU, ZHI HONG, Broadband polarization-independent two-dimensionally isotropic ultrahigh index metamaterials, Infrared Physics and Technology 89, 2018, pp. 174–180, DOI:10.1016/j.infrared.2018.01.013.
- [34] WEIMIN WANG, XUFENG JING, JINGYIN ZHAO, YINYAN LI, YING TIAN, Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure, Optica Applicata 47(2),2017, pp. 183–198, DOI:10.5277/oa170202.
- [35] RUI XIA, XUFENG JING, HUIHUI ZHU, WEIMIN WANG, YING TIAN, ZHI HONG, Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region, Optics Communications 383, 2017, pp. 310–315, DOI:10.1016/j.optcom.2016.08.060.
- [36] JINGYIN ZHAO, XUFENG JING, WEIMIN WANG, YING TIAN, DONGSHUO ZHU, GUOHUA SHI, Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region, Optics and Laser Technology 95, 2017, pp. 56–62, DOI:10.1016/j.optlastec.2017.04.001.
- [37] XUFENG JING, XINCUI GUI, RUI XIA, ZHI HONG, Ultrabroadband unnaturally high effective refractive index metamaterials in the terahertz region, IEEE Photonics Journal 9(1), 2017, article ID 59001077, DOI:10.1109/JPHOT.2016.2647558.
- [38] XUFENG JING, RUI XIA, WEIMIN WANG, YING TIAN, ZHI HONG, Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region, Journal of the Optical Society of America A 33(5), 2016, pp. 954–961, DOI:10.1364/JOSAA.33.000954.
- [39] RUI XIA XUFENG JING, XINCUI GUI, YING TIAN, ZHI HONG, Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials, Optical Materials Express 7(3), 2017, pp. 977–988, DOI:10.1364/OME.7.000977.
- [40] HUIHUI ZHU, XUFENG JING, PENGWEI ZHOU, Strong dipole and higher multi-pole Mie resonance modes with all-dielectric nanoring metasurfaces structure, Superlattices and Microstructures 113, 2018,pp. 592–599, DOI:10.1016/j.spmi.2017.11.045.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30e6337c-e9bc-461f-9a9b-a96152178545