PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polyurethanes as a Potential Medical-Grade Filament for Use in Fused Deposition Modeling 3D Printers – a Brief Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Poliuretany jako potencjalnefilamenty klasy medycznej do druku 3D w technologii Fused Deposition Modeling (FDM) – krótki przegląd literatury
Języki publikacji
EN
Abstrakty
EN
The possibility of using 3D printing technology (3DP) in medical field is a kind of revolution in health care. This has contributed to a rapid growth in demand for 3D printers, whose systems and materials are adapted to strict medical requirements. In this paper, we reporta brief review of polyurethanes as a potential medical-grade filament for use in Fused Deposition Modeling (FDM) 3D printer technology. The advantages of polyurethanes as medical materials and the basic operating principles of FDM printers are presented. The review ofpresent solutions in the market and literature data confirms the large interest in 3D printing technologies for the production of advanced medical devices. In addition, it is shown that thermoplastic-elastomer polyurethanes may be an effective widespread class of material inthe market as thermoplastic filament for FDM 3D printers.
PL
Możliwość stosowania technologii druku 3D (3DP) do zastosowań w medycynie stanowi swego rodzaju rewolucję w służbie zdrowia. Przyczyniło się to do znaczącego wzrostu zapotrzebowania na nowe drukarki oraz materiały, które są dostosowane do wymagań medycznych. W artykule przedstawiono zalety materiałów poliuretanowych, które mogą znaleźć zastosowanie jako filamenty klasy medycznej do druku 3D w technologii Fused Deposition Modeling (FDM). Opisano również podstawowe zasady działania drukarek FDM. Przegląd dostępnych rozwiązań przemysłowych oraz doniesień literaturowych potwierdził słuszność stosowania technologii druku 3D do produkcji spersonalizowanych wyrobów medycznych, wskazując jednocześnie na niewystarczającą liczbę dostępnych certyfikowanych biomedycznych materiałów dedykowanych tej technologii.
Rocznik
Strony
120--125
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
autor
  • Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, Narutowicza Street 11/12, Gdansk 80-232 Poland
autor
  • Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, Narutowicza Street 11/12, Gdansk 80-232 Poland
  • Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, Narutowicza Street 11/12, Gdansk 80-232 Poland
autor
  • Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, Narutowicza Street 11/12, Gdansk 80-232 Poland
Bibliografia
  • 1. Lamba NMK, Woodhouse KA, Cooper SL, Lelah MD. Polyurethanes in biomedical applications. CRC press, Washington, DC, 1998.
  • 2. Francolini I, Crisante F, Martinelli A, et al. Synthesis of biomimetic segmented polyurethanes as antifouling biomaterials. Acta Biomater 2012; 8:549-558. DOI: 10.1016/j.actbio.2011.10.024.
  • 3. Gabriel L, Zavaglia C, Jardini A, et al. Isocyanates as Precursors to Biomedical Polyurethanes. Chem Eng Trans 2014; 38: 253-258. DOI: 10.3303/ CET1438043.
  • 4. Barrioni BR, De Carvalho SM, Oréfice RL, et al. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslin¬ked bonds and a homogeneous structure for biomedical applications. Mater Sci Eng C 2015; 52: 22-30. DOI: 10.1016/j. msec.2015.03.027.
  • 5. Wang J, Zheng Z, Wang Q, et al. Syn¬thesis and characterization of biodegradable polyurethanes based on L-cysti¬ne/cysteine and poly(e-caprolactone). J Appl Polym Sci 2013; 128: 4047-4057. DOI: 10.1002/app.38613.
  • 6. Kucinska-Lipka J, Gubanska I, Stran-kowski M, et al. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with L-ascorbic acid, as materials for soft tissue regeneration. Mater Sci Eng C 2017; 75: 671- 681. DOI: 10.1016/j.msec.2017.02.052.
  • 7. Abraham GA, Marcos-Fernández A, San Román J. Bioresorbable poly(ester -ether urethane)s from L-lysine diisocyanate and triblock copolymers with different hydrophilic character. J Biomed Mater Res – Part A 2006; 76: 729-736. DOI: 10.1002/jbm.a.30540.
  • 8. Mondal S, Martin D. Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polym Degrad Stab 2012; 97: 1553- 1563. DOI: 10.1016/j.polymdegrad-stab.2012.04.008.
  • 9. Ruiz A, Rathnam KR, Masters KS. Effect of hyaluronic acid incorporation method on the stability and biological properties of polyurethane-hyaluronic acid biomaterials. J Mater Sci Mater Med 2014; 25: 487-498. DOI: 10.1007/s10856-013- 5092-1.
  • 10. Cauich-rodríguez J V, Chan-Chan LH, Hernandez-Sánchez F, Cervantes-Uc JM. Degradation of Polyurethanes for Cardiovascular Applications. In: Pignatello R (ed) Adv. Biomater. Sci. Biomed. Appl. InTech 2012; pp 51-82.
  • 11. Oprea S. The effect of chain extenders structure on properties of new polyure¬thane elastomers. Polym Bull 2010; 65: 753-766. DOI: 10.1007/s00289-009- 0242-9.
  • 12. Karchin A, Simonovsky FI, Ratner BD, Sanders JE. Melt electrospinning of biodegradable polyurethane scaffolds. Acta Biomater 2011; 7: 3277-3284. DOI: 10.1016/j.actbio.2011.05.017.
  • 13. Blit PH, Battiston KG, Yang M, et al. Electrospun elastin-like polypeptide enriched polyurethanes and their interac¬tions with vascular smooth muscle cells. Acta Biomater 2012; 8: 2493-2503. DOI: 10.1016/j.actbio.2012.03.032.
  • 14. Jiang X, Yu F, Wang Z, et al. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimension¬al porous scaffolds for vascular tissue engineering. J Biomater Sci Polym Ed 2010; 21: 1637-1652. DOI: 10.1163/09 2050609X12525750021270.
  • 15. Spontak RJ, Patel NP. Thermoplastic elastomers: fundamentals and applications. Curr Opin Colloid Interface Sci 2000; 5: 333-340. DOI: 10.1016/S1359- 0294(00)00070-4.
  • 16. Carneiro OS, Silva AF, Gomes R. Fused deposition modeling with polypropylene. Mater Des 2015; 83: 768-776. DOI: 10.1016/j.matdes.2015.06.053.
  • 17. Chia HN, Wu BM () Recent advances in 3D printing of biomaterials. J Biol Eng 2015; 9:1-14. DOI: 10.1186/s13036- 015-0001-4.
  • 18. Ventola CL. Medical Applications for 3D Printing: Current and Projected Uses. Pharm Ther 2014; 39: 704-711. DOI: 10.1016/j.infsof.2008.09.005.
  • 19. Klammert U, Gbureck U, Vorndran E, et al. 3D powder printed calcium phos¬phate implants for reconstruction of cranial and maxillofacial defects. J Cranio-Maxillofacial Surg 2010; 38: 565- 570. DOI: 10.1016/j.jcms.2010.01.009
  • 20. Bergmann C, Lindner M, Zhang W, et al. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 2010; 30: 2563-2567. DOI: 10.1016/j.jeurceram-soc.2010.04.037.
  • 21. Lee M-Y, Chang C-C, Ku YC. New lay¬er-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration. J Med Eng Technol 2008; 32: 83- 90. DOI: 10.1080/03091900600836642.
  • 22. Do A-V, Khorsand B, Geary SM, Sa¬lem AK. 3D Printing of Scaffolds for Tissue Regeneration Applications. Adv Healthc Mater 2015; 4: 1742-1762. DOI: 10.1002/adhm.201500168.
  • 23. Zhu W, Ma X, Gou M, et al. 3D print¬ing of functional biomaterials for tissue engineering. Curr Opin Biotechnol 2016; 40: 103-112. DOI: 10.1016/j.cop¬bio.2016.03.014.
  • 24. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of nov¬el scaffold architectures for tissue engi¬neering applications. Biomaterials 2002; 23: 1169-85.
  • 25. Garcia J, Yang Z, Mongrain R, et al. 3D printing materials and their use in medical education: a review of current technology and trends for the future. BMJ Simul Technol Enhanc Learn bmjstel-2017-000234. DOI: 10.1136/bmjs¬tel-2017-000234.
  • 26. O ’reilly MK, Reese S, Herlihy T, et al Fabrication and Assessment of 3D Printed Anatomical Models of the Lower Limb for Anatomical Teaching and Femoral Vessel Access Training in Medicine. DOI: 10.1002/ase.1538.
  • 27. Esses SJ, Berman P, Bloom AI, Sosna J (2011) Clinical Applications of Physical 3D Models Derived From MDCT Data and Created by Rapid Prototyping. Am J Roentgenol 196:W683-W688. DOI: 10.2214/AJR.10.5681.
  • 28. Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm 2016; 42:1019-1031. DOI: 10.3109/03639045.2015.1120743.
  • 29. Ursan L, Chiu L, Pierce A. Three-dimensional drug printing: A structured review. J Am Pharm Assoc 2013; 53: 136-144. DOI: 10.1331/JAPHA.2013.12217.
  • 30. Robinson A Welcome to the complex world of 3D-printed drugs. https://www. theguardian.com/sustainable-busi¬ness/2015/aug/21/welcome-to-com¬plex-world-of-3d-printed-drugs-spritam-fda. Accessed 9 Oct 2017
  • 31. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm 2015; 96: 380-387. DOI: 10.1016/j.ejpb.2015.07.027
  • 32. Bertol LS, Júnior WK, Silva FP da, Au¬mund-Kopp C () Medical design: Direct metal laser sintering of Ti-6Al-4V. Mater Des 2010; 31: 3982-3988. DOI: 10.1016/j.matdes.2010.02.050.
  • 33. Hao L, Savalani MM, Zhang Y, et al. Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development. Proc Inst Mech Eng Part H J Eng Med 2006; 220: 521-531. DOI: 10.1243/09544119JEIM67.
  • 34. Matsuda T, Mizutani M, Arnold SC. Molecular design of photocurable liquid bi¬odegradable copolymers. 1. Synthesis and photocuring characteristics. Macromolecules 2000; 33: 795-800. DOI: 10.1021/ma991404i.
  • 35. Lee KW, Wang S, Fox BC, et al. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: Effects of resin formulations and laser parameters. Bio-macromolecules 2007; 8: 1077-1084. DOI: 10.1021/bm060834v.
  • 36. Patra S, Young V. A Review of 3D Print¬ing Techniques and the Future in Biofabrication of Bioprinted Tissue. Cell Biochem Biophys 2016; 74: 93-98. DOI: 10.1007/s12013-016-0730-0.
  • 37. Murphy S V. Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 201432:773.
  • 38. Feuerbach T, Kock S, Thommes M. Characterisation of fused deposi¬tion modeling 3D printers for pharmaceutical and medical applications. Pharm Dev Technol. 2018. DOI: 10.1080/10837450.2018.1492618.
  • 39. Salentijn GIJ, Oomen PE, Grajewski M, Verpoorte E. Fused Deposition Mode¬ling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications. Anal Chem 2017; 89: 7053-7061. DOI: 10.1021/acs.anal¬chem.7b00828.
  • 40. Mohamed OA, Masood SH, Bhowmik JL. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 2015; 3: 42-53. DOI: 10.1007/s40436-014-0097-7.
  • 41. Xiao J, Gao Y. The manufacture of 3D printing of medical grade TPU. Prog Addit Manuf 20172: 117-123. DOI: 10.1007/s40964-017-0023-1.
  • 42. Gkartzou E, Koumoulos EP, Charitidis CA. Production and 3D printing process¬ing of bio-based thermoplastic filament. Manuf Rev 20174:1. DOI: 10.1051/mfreview/2016020.
  • 43. Melocchi A, Parietti F, Maroni A, et al. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm 2016; 509: 255-263. DOI: 10.1016/j.ijpharm.2016.05.036.
  • 44. Lam CX., Mo X., Teoh S., Hutmacher D. Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 2002; 20: 49-56. DOI: 10.1016/ S0928-4931(02)00012-7.
  • 45. Wu C-S. Modulation, functionality, and cytocompatibility of three-dimensional printing materials made from chitosan-based polysaccharide com¬posites. Mater Sci Eng C Mater Biol Appl 2016; 69: 27-36. DOI: 10.1016/j. msec.2016.06.062.
  • 46. Esposito Corcione C, Gervaso F, Scalera F, et al. The feasibility of printing polylac¬tic acid–nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J Appl Polym Sci 2017; 134: 1-10. DOI: 10.1002/app.44656.
  • 47. Patrício T, Domingos M, Gloria A, Bártolo P. Characterisation of PCL and PCL/ PLA scaffolds for tissue engineering. Procedia CIRP 2013; 5:110-114. DOI: 10.1016/j.procir.2013.01.022.
  • 48. Hutmacher DW, Schantz T, Zein I, et al. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused dep¬osition modeling. J Biomed Mater Res 2001; 55:203-216. DOI: 10.1002/1097- 4636(200105) 55:2<203:AID-JBM1007 >3.0.CO; 2-7.
  • 49. Stivaros SM, Williams LR, Senger C, et al. Woven polydioxanone biodegradable stents: A new treatment option for be¬nign and malignant oesophageal stric¬tures. Eur Radiol 2010; 20: 1069-1072. DOI: 10.1007/s00330-009-1662-5.
  • 50. Zhang H, Mao X, Du Z, et al () Three di¬mensional printed macroporous polylac¬tic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci Technol Adv Mater 2016; 17: 136-148. DOI: 10.1080/14686996.2016.1145532.
  • 51. Mohseni M, Hutmacher DW, Castro NJ. Independent evaluation of medi¬cal-grade bioresorbable filaments for fused deposition modelling/fused filament fabrication of tissue engineered constructs. Polymers (Basel) 2018; DOI: 10.3390/polym10010040.
  • 52. Gorna K, Gogolewski S. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J Biomed Mater Res 2003; 67A: 813-827. DOI: 10.1002/ jbm.a.10148.
  • 53. Guan J, Sacks MS, Beckman EJ, Wag¬ner WR. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: Synthesis, characterization and cytocompatibility. Biomaterials 2004; 25: 85-96. DOI: 10.1016/S0142- 9612(03)00476-9.
  • 54. Guelcher S, Srinivasan A, Hafeman A, et al. Synthesis, In Vitro Degradation, and Mechanical Properties of Two-Com¬ponent Poly(Ester Urethane)Urea Scaf¬folds: Effects of Water and Polyol Com¬position. Tissue Eng 2007; 13: 2321- 2333. DOI: 10.1089/ten.2006.0395.
  • 55. Kütting M, Roggenkamp J, Urban U, et al. Polyurethane heart valves: Past, present and future. Expert Rev Med Devices 2011; 8: 227-233. DOI: 10.1586/ erd.10.79.
  • 56. Park JH, Cho YW, Kwon IC, et al. Assessment of PEO/PTMO multiblock copolymer/segmented polyurethane blends as coating materials for urinary catheters: In vitro bacterial adhesion and encrustation behavior. Biomaterials 2002; 23: 3991-4000. DOI: 10.1016/ S0142-9612(02)00144-8.
  • 57. Lee SM, Park IK, Kim YS, et al. Physical, morphological, and wound healing properties of a polyurethane foam-film dressing. Biomater Res 2016; 20: 1-11. DOI: 10.1186/s40824-016-0063-5.
  • 58. Shimizu R, Nonomura Y. Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties. J Oleo Sci 2018; 54:47–54. DOI: 10.5650/ jos.ess17152.
  • 59. Gogolewski S, Gorna K. Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest de¬fects. J Biomed Mater Res Part A 2006; 94-101. DOI: 10.1002.jbm.a.30834.
  • 60. Sivak WN, Pollack IF, Petoud S, et al Catalyst-dependent drug loading of LDI-glycerol polyurethane foams leads to differing controlled release profiles. Acta Biomater 2008; 4:1263-1274. DOI: 10.1016/j.actbio.2008.01.008.
  • 61. Kucińska-Lipka J, Gubanska I, Pokrywczynska M, et al. Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications. Polym Bull 2017; 1-23. DOI: 10.1007/s00289-017- 2124-x.
  • 62. Teo AJT, Mishra A, Park I, et al. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater Sci Eng 2016; 2: 454-472. DOI: 10.1021/acsbiomateri¬als.5b00429.
  • 63. Jung SY, Lee SJ, Kim HY, et al. 3D print¬ed polyurethane prosthesis for partial tracheal reconstruction: a pilot animal study. Biofabrication 2016; 8:045015. DOI: 10.1088/1758-5090/8/4/045015.
  • 64. Hung K-C, Tseng C-S, Dai L-G, Hsu S. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials 2016; 83: 156-168. DOI: 10.1016/j.biomaterials.2016. 01.019.
  • 65. Hung K-C, Tseng C-S, Hsu S. Synthesis and 3D Printing of Biodegradable Poly¬urethane Elastomer by a Water-Based Process for Cartilage Tissue Engineering Applications. Adv Healthc Mater 2014; 3:1578-1587. DOI: 10.1002/ adhm.201400018.
  • 66. Chen Q, Mangadlao JD, Wallat J, et al. 3D Printing Biocompatible Polyurethane/ Poly(lactic acid)/Graphene Oxide Nano¬composites: Anisotropic Properties. ACS Appl Mater Interfaces 2017; 9:4015- 4023. DOI: 10.1021/acsami.6b11793.
  • 67. Tsai KJ, Dixon S, Hale LR, et al. Biomi¬metic heterogenous elastic tissue development. npj Regen Med 2017; 2:16. DOI: 10.1038/s41536-017-0021-4.
  • 68. Qiu K, Zhao Z, Haghiashtiani G, et al. 3D Printed Organ Models with Phys¬ical Properties of Tissue and Integrated Sensors. Adv Mater Technol 2017; 1700235:1700235. DOI: 10.1002/ admt.201700235.
  • 69. Jiang X, Yu F, Wang Z, et al. Fabrica¬tion and Characterization of Waterborne Biodegradable Polyurethanes 3-Dimensional Porous Scaffolds for Vascular Tissue Engineering. J Biomater Sci Polym Ed 2010; 21: 1637-1652. DOI: 10.1163/ 092050609X12525750021270.
  • 70. Hung KC, Tseng CS, Hsu SH. Synthesis and 3D Printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Adv Healthc Mater 2014; 3:1578-1587. DOI: 10.1002/ adhm.201400018.
  • 71. Chung M, Radacsi N, Robert C, et al. On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry. 3D Print Med 2018; 4:2. DOI: 10.1186/s41205-017-0023-2.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30e622fd-571e-4673-9c8a-6720b6e56e01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.