Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a new technique for measuring paper deformation in unidirectional tensile tests, based on recording and analysis of a series of specimen images. The proposed technique differs from the DIC-based deformation measurement in that the cross-correlation of image data has been replaced with linear filtering. For this purpose, a regular grid of markers is printed on the sample. Filtering the image creates local maxima in the places where markers occur. The developed algorithm finds their location with sub-pixel accuracy. Printing a grid of markers on tested paper and use of reference objects visible in the same image as the paper sample, freed from the need to mechanically connect the camera and the universal testing machine and from the necessity to electronically synchronize their work. The obtained deformation distributions and Poisson’s ratios are in accordance with the literature data which confirms the correctness of the developed measurement technique.
Czasopismo
Rocznik
Tom
Strony
509--522
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wzory
Twórcy
autor
- Centre of Papermaking and Printing, Lodz University of Technology, 90-924 Lodz, Wolczanska 223, Poland
autor
- Centre of Papermaking and Printing, Lodz University of Technology, 90-924 Lodz, Wolczanska 223, Poland
autor
- Centre of Papermaking and Printing, Lodz University of Technology, 90-924 Lodz, Wolczanska 223, Poland
Bibliografia
- [1] Polish Committee for Standardization. (2010). Paper and cardboard - Determination of tensile properties - Part 2: Test at constant tensile speed (20 mm / min) (ISO Standard No. PN-EN ISO 1924-2). (in Polish)
- [2] Laermann, K. H. (Eds.). (2000). Optical Methods in Experimental Solid Mechanics. Springer. https://doi.org/10.1007/978-3-7091-2586-1
- [3] Zhu, C., Wang, H., Kaufmann, K., & Vecchio, K. S. (2020). A computer vision approach to study surface deformation of materials. Measurement Science and Technology, 31(5), 055602. https://doi.org/10.1088/1361-6501/ab65d9
- [4] Sutton, M. A. (2008). Digital Image Correlation for Shape and Deformation Measurements. In: Sharpe, W. (Eds.). Springer Handbook of Experimental Solid Mechanics. Springer Handbooks (pp. 565-600). Springer. https://doi.org/10.1007/978-0-387-30877-7_20
- [5] Sutton, M. A., Orteu, J. J., & Schreier, H. (2009). Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-78747-3
- [6] Khoo, S. W., Karuppanan, S., & Tan, C. S. (2016). A review of surface deformation and strain measurement using two-dimensional digital image correlation. Metrology and Measurement Systems, 23(3), pp. 461-480. https://doi.org/10.1515/mms-2016-0028
- [7] Debella-Gilo, M., & Kääb, A. (2010). Sub-pixel Precision Image Matching for Displacement Measurement of Mass Movements Using Normalised Cross-Correlation. ISPRS TC VII Symposium - 100 Years ISPRS, Austria, XXXVIII, Part 7B.
- [8] White, D. J., Take, W. A., & Bolton, M. D. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53(7), 619-631. https://doi.org/10.1680/geot.2003.53.7.619
- [9] Take, W. A. (2015). Thirty-Sixth Canadian Geotechnical Colloquium: Advances in visualization of geotechnical processes through digital image correlation. Canadian Geotechnical Journal, 52(9), 1199-1220. https://doi.org/10.1139/cgj-2014-0080
- [10] Stanier, S. A., Blaber, J., Take, W. A., & White, D. J. (2016). Improved image-based deformation measurement for geotechnical applications. Canadian Geotechnical Journal, 53(5), 727-739. https://doi.org/10.1139/cgj-2015-0253
- [11] Chivers, K. & Clocksin, W. (2000). Inspection of Surface Strain in Materials Using Optical Flow, In Mirmehdi, M. & Barry T., (Eds.). Proceedings of the British Machine Conference. BMVA Press. https://doi.org/10.5244/C.14.41
- [12] Lyubutin, P. S. (2015). Development of optical flow computation algorithms for strain measurement of solids. Computer Optics, 39(1), 94-100. https://doi.org/10.18287/0134-2452-2015-39-1-94-100
- [13] Hartmann, C., & Volk, W. (2019). Digital image correlation and optical flow analysis based on the material texture with application on high-speed deformation measurement in shear cutting. International Conference on Digital Image & Signal Processing, United Kingdom.
- [14] Jiao, W., Fang, Y., & He, G. (2008). An integrated feature-based method for sub-pixel image matching. The International Archives of the Photogrammetry, China, XXXVII, Part B1.
- [15] Zwick Roell. Product Information videoXtens 2-120 HP. https://www.zwickroell.com
- [16] Narita, G., Watanabe, Y., & Ishikawa, M. (2016). Dynamic projection mapping onto deforming non-rigid surface using deformable dot cluster marker. IEEE Transactions on Visualization and Computer Graphics, 23(3), 1235-1248. https://doi.org/10.1109/TVCG.2016.2592910
- [17] Mishra, S. R., Mohapatra, S. R., Sudarsanan, N., Rajagopal, K., & Robinson, R. G. (2017). A simple image-based deformation measurement technique in tensile testing of geotextiles. Geosynthetics International, 24(3), 306-320. https://doi.org/10.1680/jgein.17.00003
- [18] Duda, A., & Frese, U. (2018). Accurate Detection and Localization of Checkerboard Corners for Calibration. 29th British Machine Vision Conference (BMVC-29), United Kingdom. https://bmvc2018.org/contents/papers/0508.pdf
- [19] Jones, A. R. (1968). An Experimental Investigation of the In-Plane Elastic Moduli of Paper. Tappi, 51(5), 203-209.
- [20] Szewczyk, W. (2008). New methods of assessing the load capacity of multilayer laminates of paper and cardboard. Science Notebooks Lodz University of Technology, 1027. (in Polish).
- [21] Cao, X., Bi, Z., Wei, X., & Xie, Y. (2012). Determination of Poisson’s Ratio of Kraft Paper Using Digital Image Correlation. In: Zang T. (Eds.). Mechanical Engineering and Technology. Advances in Intelligent and Soft Computing (pp. 51-57), 125. Springer. https://doi.org/10.1007/978-3-642-27329-2_8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30def8a3-29e5-434b-8eb8-bc5d52ecdf04