PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some features of ecological finish turning of low carbon steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Niektóre szczegóły ekologicznego skrawania wykończeniowego stali niskowęglowych
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research on the effect produced by various cooling methods on the chip shape, chip thickness ratio, shear angle, shearing force and machined surface roughness parameters. Dry cutting, cooling by compressed air and the Minimum-Quantity-Cooling- Lubrication (MQCL) method when finish turning of low carbon steels with different speeds of cutting and feed rates were compared. The investigations were performed in accordance with the Parameter Space Investigation method. The MQCL method is more effective for machining low carbon steel and ensures a usable chip shape. The advantage of the MQCL is confirmed by lower values of the chip thickening ratio, shearing force, machined surface roughness parameters and higher values of the shear angle. Depending on the cutting conditions, the efficiency of the MQCL method is 10 to 30% higher compared to dry machining.
PL
W artykule przedstawiono wyniki badań wpływu różnych metod chłodzenia na kształt wióra, współczynnik zgrubienia wióra, kąt i siłę poślizgu oraz parametry chropowatości obrobionej po-wierzchni. Badano metody obróbki na sucho, chłodzenia sprężonym powietrzem oraz metodę minimalnej ilości środków chłodząco-smarujących (MQCL) przy toczeniu wykończeniowym stali niskowęglowych z różnymi prędkościami skrawania i posuwami. Badania wykonano metodą planowania badania, zwaną Parameter Space Investigation. Metoda MQCL jest najbardziej efektywna przy obróbce stali niskowęglowych i zapewnia najlepsze kształty wióra. Metoda MQCL cechuje się małymi wartościami współczynnika zgrubienia wióra, siły poślizgu oraz parametrów chropowatości obrobionej powierzchni, a także dużymi wartościami kąta poślizgu. W zależności od warunków skrawania efektywność metody MQCL jest od 10 do 30 % wyższa niż obróbki na sucho.
Rocznik
Strony
13--23
Opis fizyczny
Bibliogr. 38 poz., fig.
Twórcy
autor
  • Institute of Mechanical Engineering and Machine Operation, University of Zielona Gora.
  • Institute of Mechanical Engineering and Machine Operation, University of Zielona Gora.
Bibliografia
  • [1] Adler D P., Hii W.W-P., Michalek D.J., Sutherland J.W., Examining the Role of Gutting Fluids and Efforts to Address Associated Enviromental/Health Concernp, Mach. Sci. Techn., 2006, vol. 10, no. 1, p. 23-58.
  • [2] Adnan A.P., Subbiah P., Experimental investigation of transverse vibration-assisted orthogonal cutting of AL-2024, Int. J. Mach. Tools Manuf., 2010, vol. 50, p. 294-302.
  • [3] Alvarez R.B., Martin HJ., Horstemeyer MF., Chandler M.Q., Williams N., Wang P.T., Ruiz A., Corrosion relationships as a function of time and surface roughness on astructural AE44 magnesium alloy, Corr. Sci., 2010, vol. 52, p. 1635-1648.
  • [4] Aoyama T., Development of a Mixture Supply System for Machining with Minimal Quantity Lubrication, CIRP Ann. - Manuf. Techn., 2002, vol. 51, no. 1, p. 289-292.
  • [5] Astakhov V.P., Ecological Machining: Near-dry Machining, in: Machining. Fundamentals and Recent Advances, J.P. Davim (Ed.), Springer, London Limited 2008, p. 195-217.
  • [6] Astakhov V.P., Tribology of Metal Cutting, Elsevier Ltd. 2006.
  • [7] Astakhov V.P., Outeiro J.C., Metal Cutting Mechanics, Finite Element Modelling, in: Machining. Fundamentals and Recent Advances, J.P. Davim (Ed.), Springer, London Limited 2008, p. 1-25.
  • [8] Brehl D.E., Dow T.A., Review of vibration-assisted machining, Prec. Eng., 2008, 32, p. 153-172.
  • [9] Byrne G., Dornfeld D., Denkena B., Advancing Cutting Technology, CIRP Ann. - Manuf. Techn., 2003, vol. 52, no. 2, p. 483-509.
  • [10] Cakir M.C., Isik Y., Investigating the machinability of austempered ductile irons having different austempering temperatures and times, Mater. Dep., 2008, vol. 29, p. 937-942.
  • [11] Chang W.R., Hirvonen M., Grönqvist R., The effects of cut-off length on surface roughness parameters and their correlation with transition friction, Saf. Sci., 2004, vol. 42, p. 755-769.
  • [12] Da Silva LR., Bianchi E.C., Fusse R.Y., Catai R.E., França TV., Aguiar PR., Analysis of surface integrity for minimum quantity lubricant - MQL in grinding, Int. J. Mach. Tools Manuf., 2007, vol. 47, p. 412-418.
  • [13] Ernst H., Merchant M.E., Chip formation, friction and high quality machined surfaces, Surf. Treat. Met., 1941, vol. 29, p. 299-378.
  • [14] Fengzhang R., Fengjun L., Weiming L., Zhanhong M., Baohong T., Effect of inoculating addition on machinability of gray cast iron, J. Rare Earths, 2009, vol. 27, no. 2, p. 294-299.
  • [15] Germain G., DalSanto P., Lebrun J.L., Comprehension of chip formation in laser assisted machining, Int. J. Mach. Tools Manuf., 2011, vol. 51, p. 230-238.
  • [16] Hadad M.J., Tawakoli T., Sadeghi M.H., Sadeghi B., Temperature and energy partition in minimum quantity lubrication-MQL grinding process, Int. J. Mach. Tools Manuf., 2012, vol. 10, p. 54-55.
  • [17] Honma H., Yokogawa K., Yokogawa Y., Study of environment conscious CBN cooling air grinding technology, J. J. Soc. Prec. Eng., 1996, vol. 62, no. 11, p. 1638-1642.
  • [18] Kammermeier D., Kauper H., Borchert W., Die zweite Generation der Trockenzerspanung heißt High Performance Cutting (HPC), in: K. Weinert, Spanende Fertigung, Essen, Vulkan-Verlag 2001, p. 136-150.
  • [19] Klocke F., Dry machining, CIRP Ann. - Manuf. Techn., 1997, vol. 46, no. 2, p. 519-526.
  • [20] Klocke F., Eisenblaetter G., Machinability Investigation of the Drilling Process Using Minimal Cooling Lubrication Techniques, Prod. Eng., 1997, vol. 4, no. 1, p. 19-24.
  • [21] Konold T., Maschinentechnik für die Trockenbearbeitung, VDI-Z, Integr. Produkt., 2001, vol. 4, p. 61-63.
  • [22] Kubiak K.J., Liskiewicz T.W., Mathia T.G., Surface morphology in engineering applications: Inuence of roughness on sliding and wear in dry fretting, Trib. Int., 2011, vol. 44, p. 1427-1432.
  • [23] Lee P.M., Lee W.G., Kim Y.H., Jang H., Surface roughness and the corrosion resistance of 21Cr ferritic stainless stell, Corr. Sci., 2012, vol. 63, p. 404-409.
  • [24] Li C.H., Hou Y.L., Xiu P.C., Cai G.Q., Application of lubrication theory to near-dry-green grinding-feasibility analysis, Adv. Mater. Rep., 2008, vol. 44-46, p. 135-142.
  • [25] Nayyar V., Kaminski J., Anders K.A., Nyborg L., An Experimental Investigation of Machinability of Graphitic Cast Iron Grades; Flake, Compacted and Spheroidal Graphite Iron in Continuous Machining Operations, Proc. CIRP, 2011, vol. 2, p. 488-493.
  • [26] Rahman M., Kumar A.P., Salam M.U., Experimental evaluation on the effect of minimal quantities of lubricant in milling, Int. J. Mach. Tools Manuf., 2002, vol. 42, p. 539-547.
  • [27] Sedlaček M., Podgornik B., Vižintin J., Influence of surface preparation on roughness parameters, friction and wear, Wear, 2009, vol. 266, p. 482-487.
  • [28] Simpson AT., Stear M., Groves JA., Piney M., Bradley P.D., Stagg P., Crook B., Occupational exposure to metalworking fluid mist and sump fluid contaminants, Ann. Occupat. Hyg., 2003, vol. 47, no. 1, p. 17-30.
  • [29] Spijker P., Anciaux G., Molinari J.F., Relations between roughness, temperature and dry sliding friction at the atomic scale, Trib. Int., 2013, vol. 59, p. 222-229.
  • [30] Sreejith P.P., Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions, Mater. Let., 2008, vol. 62, p. 276-278.
  • [31] Statnikov R.B., Multicriteria Design: Optimization and Identification, The Netherlands, Kluwer Academic Publishers 1999.
  • [32] Sun P., Brandt M., Dargusch M.P., Thermally enhanced machining of hard-to-machine materials - A review, Int. J. Mach. Tools Manuf., 2010, vol. 50, p. 663-680.
  • [33] Sutherland J.W., Kulur V.N., King N.C., An Experimental Investigation of Air Quality in Wet and Dry Turning, CIRP Ann. - Manuf. Techn., 2000, vol. 49, no. 1, p. 61-64.
  • [34] Tasdelen B., Thordenberg H., Olofsson D., An experimental investigation on contact length during minimum quantity lubrication (MQL) machining, J. Mater. Proc. Techn., 2008, vol. 203, p. 221-231.
  • [35] Trent E.M., Wright P.K., Metal Cutting, fourth ed., Woburn Butterworth-Heinemann 2000.
  • [36] Weinert K., Inasaki I., Sutherland J.W., Wakabayashi T., Dry Machining and Minimum Quantity Lubrication, CIRP Ann. - Manuf. Techn., 2004, vol. 53, no. 2, p. 511-537.
  • [37] Yashcheritsyn P.I., Feldshtein E.E., Kornievich M.A., Theory of cutting. New Knoledge, Minsk 2006.
  • [38] Zhang P., Li J.F., Wang Y.W., Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions, J. Clean. Prod., 2012, vol. 32, p. 81-87.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30ddd513-05e5-4ef2-b2d7-48390eac4e92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.