PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Viscoelasticity expression and extension of seismic dispersion and attenuation in porous media with multiple fracture sets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Intensive studies have been conducted on fuid-related seismic dispersion and attenuation in saturated anisotropic media. Most of the studies are concentrated on the transversely isotropy media. However, the fractures distribution in subsurface reservoirs is often complex. When there are multiple fracture sets developing in a porous background, the signatures of seismic dispersion and attenuation remain unclear. In this paper, we propose a method to calculate the frequency-dependent stifness matrix of a porous medium with multiple fractures sets from a perspective of viscoelasticity. Due to the favorable approximation performance of the generalized standard linear solid model and Chapman model, we use a modifed form of generalized standard linear solid model to simulate the frequency-dependent stifness tensor of porous media with multiple fracture sets. The representation of the stifness tensor utilizes the modulus defect to denote the efects the fractures including fracture density and geometry. With the procedure of calculating the stifness tensors at low- and high-frequency limits, we can easily calculate the frequency-dependent stifness tensor for media with multiple fracture sets with arbitrary orientations and directions. We then analyze the efects of the fracture parameters on the viscoelasticity characteristics taking orthotropic medium as an example. The results can help to understand the viscoelasticity and the mesoscopic seismic attenuation associated with fractures and fuids and can provide a practical rock physics model when dealing with reservoirs with complex fracture patterns.
Czasopismo
Rocznik
Strony
1679--1688
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • College of Earth Science and Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Huangdao District, Qingdao, China
autor
  • College of Earth Science and Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Huangdao District, Qingdao, China
autor
  • College of Earth Science and Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Huangdao District, Qingdao, China
autor
  • College of Earth Science and Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Huangdao District, Qingdao, China
Bibliografia
  • 1. Ali A, Jakobsen M (2011) Seismic characterization of reservoirs with multiple fracture sets using velocity and attenuation anisotropy data. J Appl Geophys 75(3):590–602. https://doi.org/10.1016/j.jappgeo.2011.09.003
  • 2. Baird AF, Kendall JM, Angus DA (2013) Frequency-dependent seismic anisotropy due to fractures: fluid flow versus scattering. Geophysics 78(2):WA111–WA122. https://doi.org/10.1190/geo2012-0288.1
  • 3. Biot MA (1956a) Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178. https://doi.org/10.1121/1.1908239
  • 4. Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191. https://doi.org/10.1121/1.1908241
  • 5. Brajanovski M, Gurevich B, Schoenberg M (2005) A model for P-wave attenuation and dispersion in a porous medium permeated by aligned fractures. Geophys J Int 163(1):372–384. https://doi.org/10.1111/j.1365-246X.2006.03068.x
  • 6. Brajanovski M, Müller TM, Parra JO (2010) A model for strong attenuation and dispersion of seismic p-waves in a partially saturated fractured reservoir. Sci Chin Phys Mech Astron 53(8):1383–1387. https://doi.org/10.1007/s11433-010-3205-0
  • 7. Carcione JM, Gurevich B (2011) Differential form and numerical implementation of Biot’s poroelasticity equations with squirt dissipation. Geophysics 76(6):N55–N64. https://doi.org/10.1190/geo2010-0169.1
  • 8. Chapman M (2009) Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy. Geophysics 74(6):D97. https://doi.org/10.1190/1.3204779
  • 9. Chapman M (2003) Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys Prospect 51(5):369–379. https://doi.org/10.1046/j.1365-2478.2003.00384.x
  • 10. Chapman M, Zatsepin SV, Crampin S (2002) Derivation of a microstructural poroelastic model. Geophys J Roy Astron Soc 151(2):427–451. https://doi.org/10.1046/j.1365-246X.2002.01769.x
  • 11. Dvorkin J, Mavko G (2006) Modeling attenuation in reservoir and nonreservoir rock. Lead Edge 25(2):194–197. https://doi.org/10.1190/1.2172312
  • 12. Dvorkin J, Mavko G, Nur A (1995) Squirt flow in fully saturated rocks. Geophysics 60(1):97–107. https://doi.org/10.1190/1.1443767
  • 13. Galvin R, Gurevich B (2015) Frequency-dependent anisotropy of porous rocks with aligned fractures. Geophys Prospect 63(1):141–150. https://doi.org/10.1111/1365-2478.12177
  • 14. Gassmann F (1951) Uber die elastizitat poroser Medien. Vier der Natur Gesellschaft in Zurich 96:1–23
  • 15. Gurevich B, Brajanovski M, Galvin R et al (2009) P-wave dispersion and attenuation in fractured and porous reservoirs-poroelasticity approach. Geophys Prospect 57(2):225–237. https://doi.org/10.1111/j.1365-2478.2009.00785.x
  • 16. Jakobsen M (2004) The interacting inclusion model of wave-induced fluid flow. Geophys J Int 158(3):1168–1176. https://doi.org/10.1111/j.1365-246X.2004.02360.x
  • 17. Johnson DL (2001) Theory of frequency dependent acoustics in patchy-saturated porous media. J Acoust Soc Am 110(2):682–694. https://doi.org/10.1121/1.1381021
  • 18. Lan H (2014) Wave field modelling in fractured porous media and frequency-dependent AVO reservoir parameters inversion. Jinlin University, Jinlin
  • 19. Maultzsch S, Chapman M, Liu E, Li XY (2003) Modelling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: implication of fracture size estimation from anisotropic measurements. Geophys Prospect 51(5):381–392. https://doi.org/10.1046/j.1365-2478.2003.00386.x
  • 20. Mavko G, Nur A (1975) Melt squirt in the asthenosphere. J Geophys Res 80(11):1444–1448. https://doi.org/10.1029/JB080i011p01444
  • 21. Müller TM, Gurevich B, Lebedev M (2010) Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks - a review. Geophysics 75(5):75A147–75A164. https://doi.org/10.1190/1.3463417
  • 22. Picotti S, Carcione JM, Rubino JG et al (2010) A viscoelastic representation of wave attenuation in porous media. Comput Geosci 36(1):44–53. https://doi.org/10.1016/j.cageo.2009.07.003
  • 23. Picotti S, Carcione JM (2017) Numerical simulation of wave-induced fluid flow seismic attenuation based on the Cole-Cole model. J Acoust Soc Am 142(1):134–145. https://doi.org/10.1121/1.4990965
  • 24. Pride SR, Berryman JG (2003a) Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation. Phys Rev E 68(3):036603. https://doi.org/10.1103/PhysRevE.68.036603
  • 25. Pride SR, Berryman JG (2003b) Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations. Phys Rev E 68(3):036604. https://doi.org/10.1103/PhysRevE.68.036604
  • 26. Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res Solid Earth. https://doi.org/10.1029/2003JB002639
  • 27. Rubino JG, Caspari E, Milani M et al (2015) Seismic anisotropy in fractured low-permeability formations: the effects of hydraulic connectivity. Seg Tech Progr Expand. https://doi.org/10.1190/segam2015-5844460.1
  • 28. Rubino JG, Guarracino L, Müller TM et al (2013) Do seismic waves sense fracture connectivity? Geophys Res Lett 40(4):692–696. https://doi.org/10.1002/grl.50127
  • 29. Shen B, Siren T, Rinne M (2015) Modelling fracture propagation in anisotropic rock mass. Rock Mech Rock Eng 48(3):1067–1081. https://doi.org/10.1007/s00603-014-0621-x
  • 30. Shi PD, Yuan SY, Wang TY et al (2018) Fracture identification in a tight sandstone reservoir: a seismic anisotropy and automatic multisensitive attribute fusion framework. IEEE Geosci Remote Sens Lett 15(10):1525–1529. https://doi.org/10.1109/LGRS.2018.2853631
  • 31. Shuai D, Wei JX, Di BR et al (2017) Experimental study of fracture size effect on elastic-wave velocity dispersion and anisotropy. Geophysics 83(1):1–47. https://doi.org/10.1190/geo2016-0639.1
  • 32. White JE (1975) Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 40(2):224–232. https://doi.org/10.1190/1.1440520
  • 33. Yuan SY, LiuY ZZ et al (2019) Prestack stochastic frequency-dependent velocity inversion with rock-physics constraints and statistical associated hydrocarbon attributes. IEEE Geosci Remote Sens Lett 16:140–144. https://doi.org/10.1109/LGRS.2018.2868831
  • 34. Zhang J, Huang H, Wu C et al (2018) Influence of patchy saturation on seismic dispersion and attenuation in fractured porous media. Geophys J Int 214:583–595. https://doi.org/10.1093/gji/ggy160
  • 35. Zhu Y, Tsvankin I (2006) Plane-wave propagation in attenuative transversely isotropic media. Geophysics 71(2):T17–T30. https://doi.org/10.1190/1.2187792
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30d9fa7f-a316-47a7-961b-dd36efa56869
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.