Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Our paper demonstrates the ability of Favre-averaged Navier–Stokes (FANS) turbulence models to predict the laminar-turbulent transition and shows the influence of the models on the wall temperature distribution. The investigations were based on conjugate heat transfer analyses of a convectively cooled C3X turbine vane, which were performed using commercial flow simulation software. We compared several eddy-viscosity models: shear stress transport (SST), γ-Reθ SSTtransition, v2-f, k-ε, realizable, k-kl-ω transition, and second-order closure ε-based Reynolds stress model (RSM) with a linear pressure-strain model. The turbulence length scale (TLS) was not measured during the experiment, so its influence on the location of the transition onset and wall temperature distribution is presented. We also examined the influence of the roughness of the airfoil wall on the location of turbulence initialization and the wall temperature distribution.
Rocznik
Tom
Strony
13--32
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Department of Energy Conversion Institute of Fluid Flow Machinery, Polish Academy of Sciences 80-231 Gdansk, Fiszera 14, Poland
autor
- Department of Energy Conversion Institute of Fluid Flow Machinery, Polish Academy of Sciences 80-231 Gdansk, Fiszera 14, Poland
Bibliografia
- [1] Badur J., Karcz M., Kucharski R., Wisniewski A., Kekana M.: Coupled modelling of the cooling processes. In: State of art on gas turbine research in Poland Editor T. Uhl. Cracow TU Press Kraków 2003, 19–30.
- [2] Badur J., Ziółkowski P., Sławinski D., Kornet S.: An approach for estimation of water wall degradation within pulverized-coal boilers. Energy 92(2015), 1, 142–152.
- [3] Banaszkiewicz M.: Numerical investigation of creep behaviour of high-temperature steam turbine components. Trans. Inst. Fluid-Flow Mach. 124(2012), 5–15.
- [4] Banas K., Badur J.: Influence of turbulence RANS models on heat transfer coefficients and stress distribution during thermal-FSI analysis of power turbine guide vane of helicopter turbine engine PZL-10W taking into account convergence of heat flux. Prog. Comput. Fluid Dyn. (in press).
- [5] Banas K., Badur J.: Influence of strength differential effect on material effort of a turbine guide vane based on thermo-elasto-plastic analysis. J. Therm. Stresses 40(2017), 11, 1368– 1385.
- [6] Banaszkiewicz M.: Online determination of transient thermal stresses in critical steam turbine components using a two-step algorithm. J. Therm. Stresses 40(2017), 6, 690–703.
- [7] Banaszkiewicz M.: On-line monitoring and control of thermal stresses in steam turbine rotors. Appl. Therm. Eng. 94(2016), 763–776.
- [8] Staroselsky A., Martin T.J., Cassenti B.: Transient thermal analysis and viscoplastic damage model for life prediction of turbine components. J. Eng. Gas Turb. Power 137(2015), 4, 042501.
- [9] Taler J., Weglowski B., Sobota T., Jaremkiewicz M., Taler D.: Inverse space marching method for determining temperature and stress distributions in pressure components. In: Development in Heat Transfer, M.A.D.S. Bernardes, (Ed.) In Tech, Rijeka, 2011, ISBN: 978-953-307-569-3.
- [10] Duda P.: Inverse method for stress monitoring in pressure components of steam generators. In Proc. 17th Int. Conf. on Structural Mechanics in Reactor Technology. Prague, 2003.
- [11] Wacławczyk M., Pozorski J.: Modeling of turbulent flow in the near-wall region using PDF method. J. Theor. App. Mech-Pol. 41(2003), 1, 3–18.
- [12] Durbin P.A.: Pettersson Reif B.A.: Statistical Theory and Modeling for Turbulent Flows. John Wiley & Sons, 2011.
- [13] Rumsey C.L., Pettersson Reif B.A., Gatski T.B.: Arbitrary steady-state solutions with the K-Epsilon model. AIAA J. 44(2006), 7, 1586–1592.
- [14] Rumsey C.L.: Apparent transition behavior of widely-used turbulence models. Int. J. Heat. Fluid Fl. 28(2007), 6, 1460–1471.
- [15] Bak J.G., Cho J., Lee S., Kang Y.S.: Effects of inlet turbulence conditions and near-wall treatment methods on heat transfer prediction over gas turbine vanes. Int. J. Aeronaut. Space 17(2016), 1, 8–19.
- [16] Pecnik R., Pieringer P., Sanz W.: Numerical investigation of the secondary flow of a transonic turbine stage using various turbulence closures. ASME Turbo Expo 2005: Power for Land, Sea, and Air. 6(2005), 1185–1193.
- [17] Luo J., Razinsky E. H.: Conjugate heat transfer analysis of a cooled turbine vane using the V2F turbulence model. J. Turbomach. 129(2007), 4, 773–781.
- [18] Menter F.R., Langtry R.B., Likki S.R., Suzen Y.B., Huang P.G., Volker S.: A correlation based transition model using local variables Part 1: Model formulation. J. Turbomach. 128(2006), 3, 413–422.
- [19] Lin G., Kusterer K., Ayed A.H., Bohn D., Sugimoto T.: Conjugate heat transfer analysis of convection-cooled turbine vanes using γ-Reθ transition model. Int. J. Gas Turbine, Propulsion and Power Systems (JGPP) 6(2014), 3, 9–15.
- [20] Hongjun Z., Zhengping Z., YuL., Jian Y., Songhe S.: Conjugate heat transfer investigations of turbine vane based on transition models. Chinese J. Aeronaut. 26(2013), 4, 890–897.
- [21] Yoshiara T., Sasaki D., Nakahashi K.: Conjugate Heat Transfer Simulation of Cooled Turbine Blades Using Unstructured-Mesh CFD Solver. In Proc. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, 2011.
- [22] Menter F.R., Langtry R., Volker S.: Transition modeling for general purpose CFD codes. Flow, Turbul. Combust. 77(2006), 1, 277–303.
- [23] Hylton L.D., Mihelc M.S., Turner E.R., Nealy D.A., York R.E.: Analytical and Experimenal Evalaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes. NASA Lewis Research Center, 1983.
- [24] Mendonca F., Clement J., Palfreyman D., Peck A.: Validation of unstructured CFD modelling applied to the C3X turbine including conjugate heat transfer. CD-adapco, London, 2011.
- [25] Johansson C.: Optimization of wall parameters using CFD. Master Thesis, Royal Institute of Technology, 2014.
- [26] Wang Z.F., Yan P.G., Tang H.F., Huang H.Y., Han W.J.: Study of inner-cooling channel’s heat transfer coefficient criteria formula of a high pressure air-cooled turbine. J. Eng. Thermophys. 31(2010), 2, 247–250.
- [27] Sutherland W.: The viscosity of gases and molecular force. Philos. Mag. 5(1893), 36, 507– 531.
- [28] Goldsmith A., Waterman T.E. and Hirshhorn H.J.: Handbook of Thermophysical Properties of Solid Materials – Volume II: Alloys. New York, USA: The Macmillian Company, 1961.
- [29] ANSYS Documentation
- [30] Elsner W., Warzecha P.: Modeling of rough wall boundary layers with intermittency transport model. TASK Quart. 14(2010), 3, 271–282.
- [31] Aupoix B.: Wall Roughness Modelling with k-w STT Model. In: Proc. 10th Int. ERCOFTAC Symp. on Engineering Turbulence Modeling and Measurements, 2014.
- [32] Adams T., Grant C., Watson H.: A simple algorithm to relate measured surface roughness to equivalent sand-grain roughness. Int. J. Mech. Eng. Mechatronics 1(2012), 1, 66–71.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30d3c765-3d20-4aa7-8a0f-56f33b325fbf