PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of numerical models of arch-shaped steel sheet sections

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The modern construction industry makes use of innovative production and assembly technologies, whose purpose is to implement reliable and simple structures. One product of such technologies is an arch-shaped steel sheet section that might be used as a self-supporting covering for general construction and industrial building construction. Considering complex geometry and boundary conditions, the FEM model of this structure is sophisticated and may contain errors. This paper presents numerical approaches for the calculation of sheet metal section elements of such coverings, namely two numerical approaches that differ in detailing of the properties of considered physical object. The first approach is based on a model that is characterized by simplified geometry and boundary conditions. The second scenario concerns a detailed FEM model with actual geometry captured by a laser triangulation method, experimentally determined material stress–strain relationship, and load conditions measured on an experimental stand. The results obtained with the use of computer simulations based on both approaches described above and experimental results are compared. The errors caused by simplification of the first numerical model are discussed. Finally, an acceptable reduction of FEM model complexity is proposed for the analyzed structure.
Rocznik
Strony
645--658
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Building Research Institute, 1 Filtrowa St., 00-611 Warsaw, Poland
autor
  • Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Św. A. Boboli St., 02-525 Warsaw, Poland
Bibliografia
  • [1] US Navy Course, Steel Builder, NAVEDTRA 14251, 2 (1996).
  • [2] Z. Kurzawa, K. Reszut, M. Szumigała, Stalowe konstrukcje prętowe. Część III Konstrukcje z łukami, elementy cienkościenne, przekrycia membranowe, elementy zespolone, belki podsuwnicowe., Wydawnictwo Politechniki Poznańskiej, Poznań, 2015.
  • [3] A. Biegus, D. Czepiżak, Evaluation of resistance of corrugated sheets under bending by a concentrated loads from the local suspensions, Archives of Civil Engineering (2010) 283–297.
  • [4] J. Bródka, M. Broniewicz, M. Giżejowski, Kształtowniki gięte: poradnik projektanta, Polskie Wydawnictwo Techniczne 1 (2006) 105–110.
  • [5] EN 1993-1-1 Eurocode 3: Design of steel structure. General rules and rules for buildings.
  • [6] EN 1993-1-3 Eurocode 3: General rules – Supplementary rules for cold-formed members and sheeting.
  • [7] EN 1993-1-5: Eurocode 3: General rules – Plated structural elements.
  • [8] EN 1993-1-6: Eurocode 3: Design of steel structures – Part 1–6: Strength and stability of shell structures.
  • [9] A. Piekarczuk, M. Malesa, M. Kujawinska, K. Malowany, Application of hybrid FEM-DIC method for assessment of low cost building structures, Experimental Mechanics 52 (2012) 1297–1311. , http://dx.doi.org/10.1007/s11340-012- 9616-2.
  • [10] L.L. Wu, Y.J. Shi, Theoretical and experimental study on interactive local buckling of arch-shaped corrugated steel roof, International Journal of Steel Structures 6 (2006) 45–54.
  • [11] R. Walentynski, M. Cybulska, R. Cybulski, Influence of geometric imperfections on the local stability of thin-walled elements, Shell Structures: Theory and Applications 3 (2013) 251.
  • [12] R. Cybulski, R. Walentyński, M. Cybulska, Local buckling of cold-formed elements used in arched building with geometrical imperfections, Journal of Constructional Steel Research 96 (2014) 1–13. , http://dx.doi.org/10.1016/j.jcsr. 2014.01.004.
  • [13] A. Piekarczuk, K. Malowany, P. Więch, M. Kujawińska, P. Sulik, Stability and bearing capacity of arch-shaped corrugated shell elements: experimental and numerical study, Bulletin of the Polish Academy of Sciences Technical Sciences 63 (2015), http://dx.doi.org/10.1515/bpasts-2015- 0013.
  • [14] EN ISO 6892-1:2009: Metallic materials – Tensile testing – Part 1: Method of test at room temperature.
  • [15] J. Świniarski, M. Królak, K. Kowal-Michalska, Schematyzacja charakterystyki materiału a charakterystyka rzeczywista w analizie porównawczej modelu MES i badań doświadczalnych stateczności dźwigarów cienkościennych, Acta Mechanica et Automatica 2 (1) (2008) 73–76.
  • [16] http://www.nikonmetrology.com/en_EU/Products/ Portable-Measuring (01.10.2015).
  • [17] P. Kohnke (Ed.), Theory Reference for the Mechanical APDL and Mechanical Applications, Ansys Inc., USA, 2009.
  • [18] M.A. Sutton, J.-J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, 1st ed., Springer Publishing Company, Incorporated, 2009.
  • [19] M. Malesa, M. Kujawinska, Modified two-dimensional digital image correlation method with capability of merging of data distributed in time, Applied Optics 51 (2012) 8641, http://dx. doi.org/10.1364/AO.51.008641.
  • [20] M. Malesa, M. Kujawinska, Deformation measurements by digital image correlation with automatic merging of data distributed in time, Applied Optics 52 (2013) 4681, http://dx. doi.org/10.1364/AO.52.004681.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30cf75a0-df4d-45fa-8eff-aba92784a04a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.