PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioinks for organ and tissue 3D printing

Identyfikatory
Warianty tytułu
PL
Biologiczne tusze do drukowania 3D narządów i tkanek
Języki publikacji
PL
Abstrakty
PL
Biodrukowanie 3D jest technologią wykazującą duży potencjał w medycynie regeneracyjnej. Technologia umożliwia wytworzenie trójwymiarowych funkcjonalnych tkanek i sztucznych narządów w oparciu o odpowiednie tusze biologiczne. Przegląd dostarcza informacji o biotuszach stosowanych w technologii biodruku 3D. W najnowszych doniesieniach literaturowych uwzględniano podział biotuszy ze względu na ich zastosowanie w wytwarzaniu konkretnych tkanek i narządów. Główną uwagę zwrócono na biotusze przeznaczone do regeneracji tkanki chrzęstnej, kostnej oraz nerwowej. Ponadto zaprezentowano także najnowsze badania prowadzone w kierunku opracowania biotuszy stosowanych w odbudowie skóry, naczyń krwionośnych, a także wątroby. Słowa kluczowe: inżynieria tkankowa, biodrukowanie.
EN
3D bioprinting is a technology which shows great potential in regenerative medicine. The technology enables the fabrication of 3D functional tissue and artificial organs based on suitable biological inks. This review provides information about the bioinks used in 3D bioprinting technology. Recent literature reports have considered the division of bioinks based on their application in the fabrication of specific tissues and organs. The main attention has been paid to bioinks designed for regeneration of cartilage, bone and nerve tissue. Moreover, the newest research on bioinks for skin, blood vessels and liver regeneration have been presented.
Rocznik
Strony
24--32
Opis fizyczny
Bibliogr. 88 poz., rys., tab.
Twórcy
  • Katedra Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska, ul. Jana Pawła II 37, 31-864 Kraków
  • Katedra Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska, ul. Jana Pawła II 37, 31-864 Kraków
Bibliografia
  • [1] Hong N., Yang G.H., Lee J.H., Kim G.H.: 3D bioprinting and its in vivo applications. Journal of Biomedical Materials Research – Part B Applied Biomaterials 106 (1) (2018) 444–459.
  • [2] Gu B.K., Choi D.J., Park S.J., Kim Y.J., Kim C.H.: 3D bioprinting technologies for tissue engineerig applications. Advances in Experimental Medicine and Biology 1078 (2018) 15–28.
  • [3] Mandrycky C., Wang Z., Kim K., Kim D.H.: 3D bioprinting for engineering complex tissues. Biotechnology Advances 34(4) (2016) 422–434.
  • [4] Ong S.C., Yesantharao P., Huang C.Y., Mattson G., Boktor J., Fukunishi T., Zhang H., Hibino N.: 3D bioprinting using stem cells. Pediatric Research 83 (1–2) (2018) 223–231.
  • [5] Vijayavenkataraman S., Yan W.C., Lu W.F., Wang C.H., Fuh J.Y.H.: 3D bioprinting of tissues and organs for regenerative medicine. Advanced Drug Delivery Reviews 132 (2018) 296–332.
  • [6] Hospodiuk M., Dey M., Sosnoski D., Ozbolat I.T.: The bioink. A comprehensive review on bioprintable materials. Biotechnology Advances 35 (2) (2017) 217–239.
  • [7] Gungor-Ozkerim P.S., Inci I., Zhang Y.S., Khademhosseini A., Dokmeci M.R.: Bioinks for 3D bioprinting. An overview. Biomaterials Science 6 (5) (2018) 915–946.
  • [8] Ozbolat I.T.: Scaffold-based or scaffold-free bioprinting. Competing or complementing approaches. Journal of Nanotechnology in Engineering and Medicine 6 (2) (2015).
  • [9] Khoshnood N., Zamanian A.: A comprehensive review on scaffold-free bioinks for bioprinting. Bioprinting 19 (2020) 1–44.
  • [10] Bian L.: Functional hydrogel bioink. A key challenge of 3D cellular bioprinting. APL Bioengineering 4 (3) (2020) 3–6.
  • [11] Krishnan Y., Grodzinsky A.J.: Cartilage diseases. Matrix Biology 71–72 (2017) (2018) 51–69.
  • [12] Moreira-Teixeira L.S., Georgi N., Leijten J., Wu L., Karperien M.: Cartilage tissue engineering. Endocr Dev 21 (2011) 102–115.
  • [13] Redondo M.L., Beer A.J., Yanke A.B.: Cartilage restoration. Microfracture and osteochondral autograft transplantation. Journal of Knee Surgery 31 (3) (2018) 231–238.
  • [14] Antich C., de Vicente J., Jiménez G., Chocarroa C., Carrillo E., Montañez E., Gálvez-Martín P., Marchal J.A.: Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomaterialia 106 (2020) 114–123.
  • [15] Visscher D.O., Lee H., van Zuijlen P.P.M., Helder M.N., Atala A., Yoo J.J., Lee S.J.: A photo-crosslinkable cartilage-derived extracellular matrix (ECM) bioink for auricular cartilage tissue engineering. Acta Biomaterialia 121 (2020).
  • [16] Henrionnet C., Pourchet L., Neybecker P., Messaoudi O., Gillet P., Loeuille D., Mainard D., Marquette C., Pinzano A.: Combining innovative bioink and low cell density for the production of 3D-bioprinted cartilage substitutes. A pilot study. Stem Cells International 2020 (2020).
  • [17] Lee J.S., Park H.S., Jung H., Lee H., Hong H., Lee Y.J., Suh Y.J., Lee O.J., Kim S.H., Park C.H.: 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells. Additive Manufacturing 33 (August 2019) (2020) 101136.
  • [18] Markstedt K., Mantas A., Tournier I., Martínez Ávila H., Hägg D., Gatenholm P.: 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16 (5) (2015) 1489–1496.
  • [19] Rathan S., Dejob L., Schipani R., Haffner B., Möbius M.E., Kelly D.J.: Fiber reinforced cartilage ECM functionalized bioinks for functional cartilage tissue engineering. Advanced Health-care Materials 8 (7) (2019) 1–11.
  • [20] Gu X., Ding F., Williams D.F.: Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35 (24) (2014) 6143–6156.
  • [21] Kumar R., Aadil K.R., Ranjan S., Kumar V.B.: Advances in nanotechnology and nanomaterials-based strategies for neural tissue engineering. Journal of Drug Delivery Science and Technology 57 (2019) (2020) 1016–1017.
  • [22] Bedir T., Ulag S., Ustundag C.B., Gunduz O.: 3D bioprinting applications in neural tissue engineering for spinal cord injury repair. Materials Science and Engineering C 110 (November 2019) (2020) 110741.
  • [23] Abelseth E., Abelseth L., De La Vega L., Beyer S.T., Wadsworth S.J., Willerth S.M.: 3D Printing of neural tissues derived from human induced pluripotent stem cells using a fibrin-based bioink. ACS Biomaterials Science and Engineering 5 (1) (2019) 234–243.
  • [24] Sharma R., Smits I.P.M., De La Vega L., Lee C., Willerth S.M.: 3D bioprinting pluripotent stem cell derived neural tissues using a novel fibrin bioink containing drug releasing microspheres. Frontiers in Bioengineering and Biotechnology 8 (2020) 1–12.
  • [25] Hsieh F.Y., Lin H.H., Hui Hsu S.: 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71 (2015) 48–57.
  • [26] Lee S.J., Nowicki M., Harris B., Zhang L.G.: Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D printing and electrospinning. Tissue Engineering – Part A 23 (11) (2017) 491–502.
  • [27] Gu Q., Tomaskovic-Crook E., Lozano R., Chen Y., Kapsa R.M., Zhou Q., Wallace G.G., Crook J.M.: Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Advanced Healthcare Materials 5 (12) (2016) 1429–1438.
  • [28] Zhu W., George J.K., Sorger V.J., Zhang L.G.: 3D printing scaffold coupled with low level light therapy for neural tissue regeneration. Biofabrication 9 (2017).
  • [29] World Health Organization.: Cardiovascular diseases (CVDs) (2017). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), dostęp 16.04.2021 r.
  • [30] Sun L., Zhang C., Ju Y., Tang B., Gu M., Pan B., Guo W., Wang B.: Mean corpuscular volume predicts in-stent restenosis risk for stable coronary artery disease patients receiving elective percutaneous coronary intervention. Medical Science Monitor 25 (2019) 3976–3982.
  • [31] Yu Y., Zhang Y., Martin J.A., Ozbolat I.T.: Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. Journal of Biomechanical Engineering 135 (9) (2013) 1–10.
  • [32] Zhang Y., Yu Y., Chen H., Ozbolat I.T.: Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication 5 (2) (2013).
  • [33] Zhang Y., Yu Y., Akkouch A., Dababneh A., Dolati F., Ozbolat I.T.: In vitro study of directly bioprinted perfusable vasculature conduits. Biomaterials Science 3 (1) (2015) 134–143.
  • [34] Liu S., Zhang H., Hu Q., Shen Z., Rana D., Ramalingam M.: Designing vascular supportive albumen-rich composite bioink for organ 3D printing. Journal of the Mechanical Behavior of Biomedical Materials 104 (2020) 103642.
  • [35] Gao Q., He Y., Zhong Fu J., Liu A., Ma L.: Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61 (2015) 203–215.
  • [36] Xu C., Chai W., Huang Y., Markwald R.R.: Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnology and Bioengineering 109 (12) (2012) 3152–3160.
  • [37] Jia W., Gungor-Ozkerim P.S., Zhang Y.S., Yue K., Zhu K., Liu W., Pi Q., Byambaa B., Dokmeci M.R., Shin R.S., Khademhosseini A.: Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106 (2016) 58–68.
  • [38] Bertassoni L.E., Cardoso C.C., Manoharan V., Cristino A.L., Bhise S.N., Araujo W.A., Zorlutuna P., Vrana N.E., Ghaemmaghami A.M., Dokmeci M.R.: Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 6 (2) (2014) 024105.
  • [39] Kolesky D.B., Truby R.L., Gladman A.S., Busbee T.A., Homan K.A., Lewis J.A.: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Advanced Materials 26 (19) (2014) 3124–3130.
  • [40] Poldervaart M.T., Gremmels H., Van Deventer K., Fledderus J.O., Oner F.C., Verhaar M.C., Dhert W.J.A., Alblas J.: Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. Journal of Controlled Release 184 (1) (2014) 58–66.
  • [41] Gruene M., Pflaum M., Hess C., Diamantouros S., Schlie S., Deiwick A., Koch L., Wilhelmi M., Jockenhoevel S., Haverich A., Chichkov B.: Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Engineering – Part C: Methods 17 (10) (2011) 973–982.
  • [42] Skardal A., Zhang J., Prestwich G.D.: Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31 (24) (2010) 6173–6181.
  • [43] Prestwich G.D., Skardal A., Zhang J., McCoard L., Oottamasathien S.: Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels. Advanced Materials 22 (42) (2010) 4736–4740.
  • [44] Alibardi L.: Adaptation to the land. The skin of reptiles in comparison to that of amphibians and endotherm amniotes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 298 (1) (2003) 12–41.
  • [45] Rodero M.P., Khosrotehrani K.: Skin wound healing modulation by macrophages. International Journal of Clinical and Pxperimental pathology 7 (3) (2010) 643–653.
  • [46] Kandiyali R., Thom H., Young A.E., Greenwood R., Welton N.J.: Cost-effectiveness and value of information analysis of a low-friction environment following skin graft in patients with burn injury. Pilot and Feasibility Studies 6 (1) (2020) 1–9.
  • [47] Shimizu R., Kishi K.: Skin grafts. Hindawi Publishing Corporation 2012 (2011) 1–5.
  • [48] Daikuara L.Y., Yue Z., Skropeta D., Wallace G.G.: In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering. Acta Biomaterialia 123 (2021) 286–297.
  • [49] Shi Y., Xing T.L., Zhang H.B., Yin R.X., Yang S.M., Wei J., Zhang W.J.: Tyrosinase-doped bioink for 3D bioprinting of living skin constructs. Biomedical Materials (Bristol) 13 (3) (2018).
  • [50] Koch L., Deiwick A., Schlie S., Michael S., Gruene M., Coger V., Zychlinski D., Schambach A., Reimers K., Vogt P.M., Chichkov B.: Skin tissue generation by laser cell printing. Biotechnology and Bioengineering 109 (7) (2012) 1855–1863.
  • [51] Michael S., Sorg H., Peck C.T., Koch L., Deiwick A., Chichkov B., Vogt P.M., Reimers K.: Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE 8 (3) (2013).
  • [52] Lee V., Singh G., Trasatti J.P., Bjornsson C., Xu X., Tran T.N., Yoo S.S., Dai G., Karande P.: Design and fabrication of human skin by three-dimensional bioprinting. Tissue Engineering – Part C: Methods 20 (6) (2014) 473–484.
  • [53] Lee S.J., Lee J.H., Park J., Kim W.D., Park S.A.: Fabrication of 3D printing scaffold with porcine skin decellularized bio-ink for soft tissue engineering. Materials 13 (16) (2020) 1–9.
  • [54] Pourchet L.J., Thepot A., Albouy M., Courtial E.J., Boher A., Blum L.J., Marquette C.A.: Human skin 3D bioprinting using scaffold-free approach. Advanced Healthcare Materials 6 (4) (2017) 1–8.
  • [55] Desanlis A., Albouy M., Rousselle P., Thépot A., Dos Santos M., Auxenfans C., Marquette C.: Validation of an implantable bioink using mechanical extraction of human skin cells. First steps to a 3D bioprinting treatment of deep second degree burn. Journal of Tissue Engineering and Regenerative Medicine 15 (1) (2021) 37–48.
  • [56] Zidarič T., Milojević M., Gradišnik L., Kleinschek K.S., Maver U., Maver T.: Polysaccharide-based bioink formulation for 3D bioprinting of an in vitro model of the human dermis. Nanomaterials 10 (4) (2020) 1–19.
  • [57] Baltazar T., Merola J., Catarino C., Xie C.B., Kirkiles-Smith N.C., Lee V., Hotta S., Dai G., Xu X., Ferreira F.C., Saltzman W.M., Pober J.S., Karande P.: Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells. Tissue Engineering – Part A 25 (5–6) (2020) 227–238.
  • [58] Brohem C.A., Da Silva Cardeal L.B., Tiago M., Soengas M.S., De Moraes Barros S.B., Maria-Engler S.S.: Artificial skin in perspective. Concepts and applications. Pigment Cell and Melanoma Research 24 (1) (2011) 35–50.
  • [59] Hafezi F., Shorter S., Tabriz A.G., Hurt A., Elmes V., Boateng J., Douroumis D.: Bioprinting and preliminary testing of highly reproducible novel bioink for potential skin regeneration. Pharmaceutics 12 (6) (2020) 1–21.
  • [60] Zhang J., Yun S., Karami A., Jing B., Zannettino A., Du Y., Zhang H.: 3D printing of a thermosensitive hydrogel for skin tissue engineering. A proof of concept study. Bioprinting 19 (2020) 00089.
  • [61] Koyama Y., Brenner D.A.: Liver inflammation and fibrosis. Journal of Clinical Investigation 127 (1) (2017) 55–64.
  • [62] Asrani S.K., Devarbhavi H., Eaton J., Kamath P.S.: Burden of liver diseases in the world. Journal of Hepatology 70 (1) (2019) 151–171.
  • [63] Rana A., Godfre E.: Outcomes in solid-organ transplantation. Texas Heart Institute Journal 46 (1) (2019) 75–76.
  • [64] Mazzocchi A., Devarasetty M., Huntwork R., Sokre S., Skardal A.: Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. International Society for Biofabrication (2018) 11–14.
  • [65] Skardal A., Devarasetty M., Kang H.W., Mead I., Bishop C., Shupe T., Lee S.J., Jackson J., Yoo J., Soker S., Atala A.: A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomaterialia 25 (2015) 24–34.
  • [66] Hiller T., Berg J., Elomaa L., Röhrs V., Ullah I., Schaar K., Dietrich A.C., Al-Zeer M.A., Kurtz A., Hocke A.C., Hippenstiel S., Fechner H., Weinhart M., Kurreck J.: Generation of a 3D liver model comprising human extracellular matrix in an alginate/gelatin-based bioink by extrusion bioprinting for infection and transduction studies. International Journal of Molecular Sciences 19 (10) (2018) 1–17.
  • [67] Lee H.J., Kim Y.B., Ahn S.H., Lee J.S., Jang C.H., Yoon H., Chun W., Kim G.H.: A new approach for fabricating collagen/ECM-based bioinks using preosteoblasts and human adipose stem cells. Advanced Healthcare Materials 4 (9) (2015) 1359–1368.
  • [68] Wu Y., Lin Z.Y., Wenger A.C., Tam K.C., Tang X.: 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting 9 (2018) 1–6.
  • [69] Wu Y., Wenger A., Golzar H., Tang X.: 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink. Scientific Reports 10(1) (2020) 1–12.
  • [70] Mao Q., Wang Y., Li Y., Juengpanich S., Li W., Chen Mingyu., Yin J., Fu J., Cai X.: Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Materials Science and Engineering C 109 (August 2019) (2020) 110625.
  • [71] Snyder J.E., Hamid Q., Wang C., Chang R., Emami K., Wu H., Sun W.: Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3 (3) (2011) 034112.
  • [72] Markings B.: Osseous tissue & bone structure. Part I. Overview & components (1995) 7. http://www.ellensavoinicom/201_public/Osteology PPT Notes wDiagrams.pdf, dostęp 16.04.2021 r.
  • [73] Rachner T.D., Khosla S., Hofbauer L.C.: Osteoporosis. Now and the future. The Lancet 377 (9773) (2011) 1276–1287.
  • [74] Levin V.A., Jiang X., Kagan R.: Estrogen therapy for osteoporosis in the modern era. Osteoporosis International 29 (5) (2018) 1049–1055.
  • [75] Sozen T., Ozisik L., Calik B.: An overview and management of osteoporosis. European Journal of Rheumatology 4 (1) (2017) 46–56.
  • [76] Szcześ A., Hołysz L., Chibowski E.: Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science 249 (2017) 321–330.
  • [77] Słota D., Florkiewicz W., Sobczak-Kupiec A.: Ceramic-polymer coatings on Ti-6Al-4V alloy modified with L-cysteine in biomedical applications. Materials Today Communications 25 (2020).
  • [78] Catros S., Fricain J.C., Guillotin B., Pippenger B., Bareille R., Remy M., Lebraud E., Desbat B., Amédée J., Guillemot F.: Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3 (2) (2011) 025001.
  • [79] Wüst S., Godla M.E., Müller R., Hofmann S.: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomaterialia 10 (2) (2014) 630–640.
  • [80] Poldervaart M.T., Wang H, van der Stok J., Weinans H., Leeuwenburgh S.C.G., Öner F.C., Dhert W.J.A., Alblas J.: Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS ONE 8 (8) (2013).
  • [81] Wenz A., Janke K., Hoch E., Tovar G.E.M., Borchers K., Kluger P.J.: Hydroxyapatite-modified gelatin bioinks for bone bioprinting. BioNanoMaterials 17 (3–4) (2016) 179–184.
  • [82] Sadat-Shojai M., Khorasani M.T., Jamshidi A.: 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications. Materials Science and Engineering C 49 (2015) 835–843.
  • [83] Wenz A., Borchers K., Tovar G.E.M., Kluger P.J.: Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Biofabrication 9 (4) (2017) 0–30.
  • [84] Kim W.J., Yun H.S., Kim G.H.: An innovative cell-laden α-TCP/collagen scaffold fabricated using a two-step printing process for potential application in regenerating hard tissues. Scientific Reports 7 (1) (2017) 1–12.
  • [85] Kim W.J., Kim G.H.: Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration. Biofabrication 12 (1) (2019) 0–31.
  • [86] Gao G., Schilling A.F., Yonezawa T., Wang J., Dai G., Cui X.: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnology Journal 9(10) (2014) 1304–1311.
  • [87] Levato R., Visser J., Planell J.A., Engel E., Malda J., Mateos-Timoneda M.A.: Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6 (3) (2014).
  • [88] Campos D.F.D, Blaeser A., Korsten A., Neuss S., Jäkel J., Vogt M., Fischer H.: The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Tissue Engineering – Part A 21 (3–4) (2015) 740–756.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30cf1802-0bfb-4f66-adc4-386275e90cc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.