PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variational formulations of contact, friction and wear problems

Autorzy
Identyfikatory
Warianty tytułu
PL
Wariacyjne opisy zagadnień kontaktu, tarcia i zużycia
Języki publikacji
EN
Abstrakty
EN
Modern methods of analysis of contact problems are based on the variational approach which together with the finite element method expand possibilities of analysis in many cases. In this study, generalizations of classical variational principles are given in the case of contact of rubbing and wearing solids. Variational formulations of deformations are developed starting from the strong forms of the governing equations for the contact problems. Different approaches are applied to calculations of contact forces and to satisfaction of kinematic contact constraints. Variational descriptions of a heat conduction in solids are presented in the case of a heat generated by friction process. Finite element implementation of the contact problems is discussed. Anisotropic and nonhomogeneous friction, frictional heat and wear are taken into account. Easy observable results of the wear process can be identified as an increase of a gap between the contacting bodies (wear profiles) and as activity of wear debris in the contact region. In this study, the definition of the gap between two contacting bodies is modified taking into account wear profiles. The classical variational setting of the contact problems is extended into three body contact by including the interfacial layer of wear debris with translational and rotational degrees of freedom. Discretized forms of the variational functionals lead to equations which can be useful in numerical analysis of machine component parts and tools operating in contact and friction conditions.
PL
Współczesne metody analizy zagadnień kontaktowych korzystają z podejścia wariacyjnego, które wraz z metodą elementów skończonych rozszerza możliwości analizy w wielu przypadkach. W pracy przedstawiono uogólnienie klasycznych zasad wariacyjnych na przypadek kontaktu trących i zużywających się ciał stałych. Wariacyjne opisy odkształceń wyprowadzono wychodząc z różniczkowych postaci równań stanu dla zagadnień kontaktowych. Różne podejścia zastosowano w celu obliczenia sił kontaktowych oraz spełnienia kinematycznych więzów kontaktu. Przedstawiono wariacyjne sformułowania przewodnictwa ciepła w przypadku ciepła generowanego w procesie tarcia. Następnie przedstawiono implementację do metody elementów skończonych. Uwzględniono anizotropowe i niejednorodne tarcie, ciepło tarcia i zużycie. Łatwymi do zaobserwowania objawami procesu zużycia są: powiększanie luzów między stykającymi się ciałami (profile zużycia) oraz obecność cząstek zużycia w strefie styku ciał . W pracy, zmodyfikowano definicję szczeliny między dwoma stykającymi się ciałami biorąc pod uwagę profile zużycia. Klasyczne wariacyjne sformułowania zagadnień kontaktowych rozszerzono na przypadek styku trzech ciał uwzględniając warstwę cząstek zużycia między stykającymi się ciałami. Dyskretne postacie funkcjonałów wariacyjnych prowadzą do równań, które mogą być użyteczne w analizie numerycznej części maszyn i narzędzi pracujących w warunkach kontaktu i tarcia.
Twórcy
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gen. J. Fiszera 14, PL-80-952 Gdańsk
Bibliografia
  • [1] ALART, P. and CURNIER, A. (1991). A mixed formulation for frictional contact problems prone to Newton like sołution methods. Compt. Meth. Appl. Mech. Engng. 92(3), 353-375.
  • [2] ALIABADI, M.H. and BREBBIA, C.A.(eds) (1993). Computational Methods in Contact Mechanics. Computational Mechanics Publications, Southampton.
  • [3] ARCHARD, J.F. (1953). Contact and rubbing of flat surfaces, J.Appl.Phys. 24(8), 981-988.
  • [4] BAJER, C. (1997). Numeryczne modelowanie czasoprzestrzenne dynam¬icznych zagadnień kontaktowych. Prace IPPT, Nr. 5/1997, pp.189.
  • [5] BARBER, J.R. and COMNINOU, M. (1989). Thermal contact problems. In Thermal Stresses III (ed. B.Hetnarski), North-Holland, Amsterdam, pp.1- 106.
  • [6] BATHE, K.-J. (1982). Finite Element Procedures in Engineering Analysis. Prentice, New Jersey.
  • [7] BIOT, M. (1970). Variational Principles in Heat Transfer. Oxford University Press, Oxford.
  • [8] BÖHM, J. (1987). A comparison of different contact algorithms with applications. Computers & Structures 26(1/2), 207-221.
  • [9] BOLEY, B.A. and WEINER, J.H. (1960). Theory of Thermal Stresses. J.Wiley, New York.
  • [10] BUFLER, H. (1979). Zur Struktur der Gleichungen der Elastokinetik und Elastostabilitat. ZAMM, 59, 73-78.
  • [11] BUFLER, H. (1979). Generalized variational principles with relaxed continuity reąuirements for certain nonlinear problems with an application to nonlinear elasticity. Comput.Meths.Appl.Mech.Engr., 19, 235-255.
  • [12] BUFLER, H., LIEB, H. and MEIER, G. (1982). Frictionless contact between an elastic stamp and an elastic foundation. Ingenieur-Archiv, 52, 63-76.
  • [13] BUFLER, H. (1985). Derivation of the variational ineąualities and extremum principles of the frictionless elastic contact problem. Comp.Meth.Appl.Mech.Engng 53, 163-182.
  • [14] BUFLER, H. (1993). Conservative systems, potential operators and tangent stiffness: reconsideration and generalization. Arch.Appl.Mech., 63(1), 51-58.
  • [15] CARSLAW, H.S. and JEAGER, J.C. (1959). Conduction of Heat in Solids. Clarendon Press, Oxford, 2nd ed.
  • [16] CESCOTTO, S. and CHARLIER, R. (1993). Frictional contact finite elements based on mixed variational principles. Int.J.Num.Meth.Engng, 36(10). 1681-1701.
  • [17] CHANG, H.-W. (1983). Wear characteristics of composites: effect of fiber orientation. Wear 85(1), 81-91.
  • [18] CHEN, W.-H. and TSAI, P. (1986). F.e. analysis of elastodynamic sliding contact problems with friction. Comp. Struct. 22(6), 925-938.
  • [19] CHEN, W.-H. and YEN, J.-T. (1988). Finite element analysis of finite deformation contact problems with friction. Comp. Struct. 29(3), 423-436.
  • [20] DOWSON, D. et el. (eds) (1992). Wear Particles: From the Cradle to the Grave, Proceedings of the 18th Leeds-lyon Symposium on Tribology held a: the INSA, Lyon, France, 3rd-6th September , 1991, Elsevier Amsterdam.
  • [21] DOWSON, D. et al. (eds) (1995). The Third Body Concept: Interpretation of Tribological Phenomena, 22nd Leeds-lyon Symposium on Tribology, Lyon. France, September 5-8, 1995.
  • [22] DUVAUT, G. and LIONS, J.-L. (1972). Les Ineąuations en Mecaniąue et en Physiąue. Dunod, Paris. English edition: Ineąualities in Mechanics ar*i Physics. Springer, Berlin.
  • [23] EDLUND, U. (1994). Surface adhesive joint description with coupled elastic-plastic damage behaviour and numerical applications. Comput. Methodi Appl.Mech.Engrg. 115, 253-276.
  • [24] EKELAND, I. and TEMAN, R. (1976). Convex Analysis and Variational Problems. North-Holland, Amsterdam.
  • [25] FICHERA, G. (1964). Probierni elastostatici eon vincoli unilaterali: il problema del Signorini eon ambigue condizioni al contorno. Memorie Acc.Naz. dei Lincei 8(7), 91-140.
  • [26] FICHERA, G. (1972). Boundary value problems in elasticity with unilateral constraints. In Encyclopedia of Physics vol. Via, pp.391-424, Springer, Berlin.
  • [27] FRANCAVILLA, A. and ZIENKIEWICZ, O.C. (1975). A note on numerical computation of elastic contact problems. Int.J.Num.Meth.Engng. 9, 913-924.
  • [28] GALIN, L.A. (1980). Contact Problems in the Theory of Elasticity and Viscoelasticity. Nauka, Moscow (in Russian).
  • [29] GALIN, G.L. and GORIACEVA, I.G. (1980). Contact problems and their applications in the theory of friction and wear. Trenie Iznos 1(1), 105-119 (in Russian).
  • [30] GANGHOFFER, J.F., BRILLARD, A. and SCHULTZ, J. (1996). A deductive theory of friction II: Mathematical study. Wear 195 (1-2), 81-89.
  • [31] GANGHOFFER, J.F., BRILLARD, A. and SCHULTZ, J. (1997). A model of damaged adhesives. Eur.J.Mech., A/Solids 16(1), 19-52.
  • [32] GANGHOFFER, J.F., BRILLARD, A. and SCHULTZ, J. (1997). Modelling of the mechanical behaviour of joints bonded by a nonlinear incompressible elastic adhesive. Eur.J.Mech., A/Solids 16 (2), 255-276.
  • [33] GELFAND, I.M. and FOMIN, S.W. (1972). Rachunek wariacyjny. PWN, Warszawa.
  • [34] GLADWELL, G.M.L. (1980). Contact Problems in Classical Theory of Elasticity. Sijthoff & Noordhoff, Alphen aan den Rijn.
  • [35] GLODEŽ, S., REN, Z. and FLASKER, J. (1998). Simulation of surface pitting due to contact loading. Int. J.Numer.Meth.Engng., 43(1), 33-50.
  • [36] GUMIŃSKI, K. (1983). Termodynamika procesów nieodwracalnych. PWN, Warszawa.
  • [37] GUTOWSKI, R. (1971). Mechanika analityczna. PWN, Warszawa.
  • [38] HERTZ, H. (1881). Über die Beruhrung fester elastischer Körper. Journal fűr die reine und angewandte Mathematik 92, 156-171.
  • [39] HLAVÁCEK, L, HASLINGER, J., NEČAS, J. and LOVIŠEK, J. (1982). Solution of Variational Ineąualities in Mechanics. Springer, New York.
  • [40] HOLM, R., (1946). Electrical Contacts, Almqvist and Wikselles, Stockholm.
  • [41] JOHNSON, K.L (1985). Contact Mechanics. Cambridge University Press, Cambridge.
  • [42] JOO, J.W. and KWAK, B.M. (1986). Analysis and applications of elastoplastic contact problems considering large deformation. Comp. Struct. 28(4), 469-480.
  • [43] JU, J.W. and TAYLOR, R.L. (1988). A perturbed Lagrangian formulation for the finite element solution of nonlinear frictional contact problems. J.Mec.Theor.Appl. Special issue: Numerical Methods in Mechanics of Contact Involving Friction 7(supplement no.1), 1-14.
  • [44] KALKER, J.J. (1988). Contact mechanical algorithms. Commun. in Appl.Numer.Meth. 4, 25-32.
  • [45] KALKER, J.J. (1992). Modification of the two-body contact conditions to account for the third body, In Wear Particles: From the Cradle to the Grave (eds. D.Dowson et al.), Elsevier, Amsterdam, pp.183-189.
  • [46] KENNEDY, F.E. and LING, F.F. (1974). A thermal, thermoelastic and wear simulation of a high-energy sliding contact problem. J.Lubr.Tech. 94, 497-507.
  • [47] KENNEDY, F.E. (1981). Surface temperatures in sliding systems — a finite element analysis. ASME J.Lubrication Technology 103, 90—96.
  • [48] KIKUCHI, N. and ODEN, J.T. (1988). Contact Problems in Elasticity: A Study of Variational Inegualities and Finite Element Methods. Society for Industrial and Applied Mathematics, Philadelphia.
  • [49] KINDERLEHRER, D. and STAMPACCHIA, G. (1980). An Introduction to Variational Inequalities and Their Applications. Academic Press, New York.
  • [50] KLARBRING, A. (1988). On discrete and discretized non-linear elastic structures in unilateral contact (stability, uniąueness and yariational principles). Int.J.Solids Structures, 24(5), 459-479.
  • [51] KLARBRING, A. (1993). Mathematical programming in contact problems. In Computational Methods in Contact Mechanics (eds. M.H. Aliabadi, C-A_ Brebbia). Computational Mechanics Publications, Southampton, pp.231-263.
  • [52] KLEIBER, M. (1985). Metoda elementów skończonych w nieliniowej mechanice kontinuum. PWN, Warszawa.
  • [53] LANCZOS, C. (1964). The Variational Principles in Mechanics. Univasity of Toronto Press, Toronto.
  • [54] LAURSEN, T. and SIMO, J.C. (1993). A continuum-based finite element formulation for the implicit solution of multibody large deformation frictionaf contact problems. Int. J.Numer. Meth.Eng. 36, 3451—3485.
  • [55] LEBON, G. (1980). Variational principles in thermomechanics. In Recent Developments in Thermomechanics of Solids (eds. G.Lebon, P.Perzyna), Springer.
  • [56] LING, F.F. (1973). Surface Mechanics. J.Wiley, New York.
  • [57] LIPPMANN, H. (1972). Extremum and Variational Principles in Mechanics. CISM Courses and Lectures, Springer, Wien.
  • [58] MOREAU, J.J. (1968). La notion de superpotentiel et les liaisons unilaterales en elastostatique. C.R.Acad.Sci. Paris 167A, 954-957.
  • [59] NOWACKI, W. (1966). Dynamiczne zagadnienia termosprężystości, PWN, Warszawa.
  • [60] OANCEA, V.G. and LAURSEN, T.A. (1997). A finite element formulation of thermomechanical rate-dependent frictional sliding. Int. J.Numer. Meth. Engng. 40(23), 4275-4311.
  • [61] ODEN, J.T. and KROSS, D.A. (1968). Analysis of generał coupled thermoelasticity problems by the finite element method. In Proc. Second Conf. on Matrix Methods in Structural Mechanics.
  • [62] ODEN, J.T. and REDDY, J.N. (1976). Variational Methods in Theoretical Mechanics. Springer.
  • [63] OHMAE, N. and TSUKIZOE, T. (1980). Analysis of a wear process using the finite element method. Wear 61, 333-339.
  • [64] OHMAE, N. (1987). Analysis of the large plastic deformation involved in wear processes using the finite element method with updated Lagrangian formulation. J. Tribology 109, 330-337.
  • [65] PANAGIOTOPOULOS, P.D. (1985). Ineąuality Problems in Mechanics and Applications. Birkhauser, Boston.
  • [66] PANAGIOTOPOULOS, P.D. (1993). Hemivariational Ineąualities. Applications in Mechanics and Engineering. Springer, Berlin.
  • [67] PARKUS, H. (1970). Variational Principles in Thermo- and Magneto-Elasticity. CISM Lectures, No. 58, Springer, Wien.
  • [68] RABINOWICZ, E. (1995). Friction and Wear of Materials, J.Wiley, N.Y., 2nd ed.
  • [69] RAFALSKI, P. (1968). A yariational principle for the coupled thermoelastic problem. Int.J.Engng. Sci. 6, 465.
  • [70] RAOUS, M. (ed.) (1988). Numerical Methods in Mechanics of Contact Involving Friction. J.Mec. Theor.Appl. Special issue 7 (supplement no.l).
  • [71] REKTORYS, K. (1984). Variationsmethoden in Mathematik, Physik und Technik. Carl Hauser Verlag, Műnchen.
  • [72] ROONEY, G.P. and DERAVI, P. (1982). Coulomb friction in mechanism sliding joints. Mechanism and Machinę Theory 17(3), 207-211.
  • [73] SHIM, H.H. and KWON, O.K. (1992). Effects of fiber orientation and humidity on friction and wear properties of graphite fiber composites. Wear 157(1). 141—149.
  • [74] SIENIUTYCZ, S. (1977). The variational principles of classical type for non-coupled non-stationary irreversible transport processes with convective morios. and relaxation. Int. J. Heat Mass Transfer 20, 1221-1231.
  • [75] SIGNORINI, A. (1933). Sopra alcune ąuestioni di elastostatica. Atti della XXI Riunione della Soc. Ital. per il Progresso delie Scienze, vol.2, pp.7-8.
  • [76] SIGNORINI, A. (1959). Questioni di elasticita non linearizzata o semi-linearizzata. Rend. di Matem, e delle sue appl. 18, 1-45.
  • [77] SIMO, J.C. and LAURSEN, T.A. (1992). An augmented Lagrangian treatment of contact problems involving friction. Comput. & Struct, 42(1). 97-116.
  • [78] SKALSKI, K. (1988). Zagadnienia kontaktowe w zakresie sprężysto-plastycznym. In Mechanika Kontaktu Powierzchni (ed. Z.Mróz), Ossolineum, Wrocław, pp.211-273.
  • [79] SOSNOWSKI, W. (1995). Finite element simulation of industrial sheet metal forming processes. Prace IPPT No.17/1995.
  • [80] SRINIVASAN, A.V. and CASSENTI, B.N. (1986). A nonlinear theory of dynamic systems with dry friction forces. ASME: J. of Engineering far Gas Turbines and Power 108, 525-530.
  • [81] STEINMANN, P. and STEIN, E. (1997). A unifying treatise of variational principles for two types of micropolar continua. Acta Mechanica 121 (1-4), 215-232.
  • [82] STRÖMBERG, N. (1997). Thermomechanical modelling of tribological systems. Linköping Studies in Science and Technology. Dissertations No. 497, Linköping University, pp.136.
  • [83] STRÖMBERG, N. (1999). A Newton method for three-dimensional fretting problems. Int.J.Solids Structures, 36, 2075-2090.
  • [84] SZEFER, G. and JASIŃSKA, D. (1994). Dynamic contact analysis for a new model of friction. ZAMM 74(4), T202-T204.
  • [85] SZEFER, G., JASIŃSKA, D. and SALAMON, J.W. (1994). Concept of a singular surface in contact mechanics. Arch.Mech. 46(4), 581-603.
  • [86] SZEFER, G. (1997). Dynamic contact of bodies experiencing large deformations. Acta Mechanica 125(1-4), 217-233.
  • [87] SZEFER, G. (1998). Contact problems in terms of large deformations. ZAMM 78(8), 523-533.
  • [88] TATARKIEWICZ, K. (1970). Rachunek wariacyjny cz l, 2. Wydawnictwo Naukowo-Techniczne, Warszawa.
  • [89] TELEGA, J.J. (1988). Topics on unilateral contact problems of elasticity and inelasticity. In Nonsmooth Mechanics and Applications (eds. J.J.Moreau, P.D.Panagiotopoulos), Springer, Wien, pp.340-461.
  • [90] TELEGA, J.J. (1988). Nierówności wariacyjne w zagadnieniach kontaktowych mechaniki. In Mechanika Kontaktu Powierzchni (ed. Z. Mróz), Ossolineum, Wrocław, pp.51-165.
  • [91] TELEGA, J.J. (1990). Metody wariacyjne i analiza wypukła w zagadnieniach kontaktowych i homogenizacji. Prace IPPT No.38/90, pp.209.
  • [92] TING, B.-Y. and WINER, W.O. (1988). A proposed thermomechanical wear theory. In Approaches to Modeling of Friction and Wear (eds. F.F.Ling, C.H.T.Pan), Springer, N.Y., pp.125-134.
  • [93] TONTI, E. (1984). Variational formulation for every nonlinear problem. Int.J.Engng.Sci., 22(11/12), 1343-1371.
  • [94] TORSTENFELT, B. (1983). Contact problems with friction in generał purpose f.e. computer programs. Comp. Structures 16(1-4), 487-493.
  • [95] TRIPATHY, B.S. and FUREY, M.J. (1993). Tribological behavior of unidi-rectional graphite-epoxy and carbon-PEEK composites. Wear 162-164(Part A), 384—396.
  • [96] WASHIZU, K. (1975). Variational Methods in Elasticity and Plasticity, 2nd ed. Pergamon Press, Oxford.
  • [97] WEIERGRABER, M. (1983). Werkzeugverschleiß in der Massivumformung, Berichte aus dem Institut fűr Umformtechnik, Nr.73, Universität Stuttgart, S.41.
  • [98] WRIGGERS, P. (1995). Finite element algorithms for contact problems. Archives of Computational Methods in Engineering 2(4), 1-49.
  • [99] WRIGGERS, P. (1996). Finite element methods for contact problems with friction. Tribology International, 29(8), 651-658.
  • [100] WUTTKOWSKI, J.G. and IOANNIDES, E. (March 1992). The effect of contaminants on bearing life. SKF, Bali Bearing Journal, No.239, 9-11.
  • [101] YAGAWA, G. and KANTO, Y. (1993). Finite element analysis of contact problems usinf penalty function method. [In] Computational Methods in Contact Mechanics (eds. M.H.Aliabadi, C.A.Brebbia), Computational Mechanics Publications, Southampton, pp.
  • [102] YANG JINSEUNG, COWAN, R.S. and WINER, W.O. (1993). Prediction of failure transitions in sliding contacts by a thermomechanical wear model. J. Tribology 115(3), 432-438.
  • [103] ZHONG, Z.H. and MACKERLE, J. (1992). Static contact problems - a review. Engineering Computations 9(1), 3-37.
  • [104] ZHONG, Z.H. (1993). Finite Element Procedures for Contact-Impact Problems. Oxford University Press, Oxford.
  • [105] ZIENKIEWICZ, O.C. (1972). Metoda Elementów Skończonych. PWN. Warszawa.
  • [106] ZMITROWICZ, A. (1989). On the thermodynamics of contact, friction and wear. Zeszyty Naukowe IMP PAN No. 287/1212/89, Gdańsk, pp.190
  • [107] ZMITROWICZ, A. (1993). Constitutive modelling of anisotropic phenomena of friction, wear and frictional heat. Zeszyty Naukowe IMP PAN No 381/1342/93, Gdańsk, pp.234.
  • [108] ZMITROWICZ, A. (1998). Constitutive modelling of non-homogeneousanci anisotropic friction of materials - sliding path curvature effects, In Computational Mechanics. New Trends and Applications, CD-ROM, (eds. S.Idelsohn E.Oñate, E.Dvorkin), Centro International de Metodos Numericos en Ingenieria, Barcelona, Hiszpania, pp.1-21.
  • [109] ZMITROWICZ, A. (1999). An eąuation of anisotropic friction with sliding path curvature effects. Int.J. Solids Structures 36(19), 2825-2848.
  • [110] ZMITROWICZ, A. (1999). Illustrative examples of anisotropic friction with sliding path curvature effects. Int.J. Solids Structures 36(19), 2849-2863.
  • [111] ZMITROWICZ, A. (2000). Variational approach to contact, friction and wear problems. ZAMM (to appear).
  • [112] ZMITROWICZ, A. (2000). Strong and weak formulations of contact problems with various laws of friction, frictional heat and wear. Machinę Dynamics Problems (to appear)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30ce89dc-463d-479c-95a5-967f23738396
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.