PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural characteristics and seasonal growth patterns observed in Metoposaurus krasiejowensis teeth

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The tooth microstructure of Metoposaurus krasiejowensis was studied to observe external morphology, internal microstructure (comprising dentine structure and directional porosity as possible predatory adaptations) and enamel/enameloid mineral composition. Scanning electron microscopy (SEM) observation and thin-section inspection by light microscope enabled us to recognize a directional porosity in the tooth cross-sections, interpreted here as a part of the labyrinthodont structure displayed by temnospondyls and related groups. This network of canals is highly complicated and reveals a three-dimensional structure. The teeth present different cross-sections based on the distance from the tip, with a wide, circular, reinforced base and lateral compressed, directional cuspidal section with cutting edge. Interestingly, the internal structure observed in M. krasiejowensis teeth exhibit a peculiar variation of internal structure of temnospondyl teeth, as the convoluted canal-like structure seems to be irregular and appears in the upper section of teeth, while teeth bases show a regular structure with a pulpal cavity circled by pores. Furthermore, bands of incremental growth marks interpreted as Andresen lines, characterized by pronounced colour variation, were observed with strong implications for seasonal growth patterns in dentine. Additionally, a significant proportion (1.43–2.73%) of fluoride was observed as a component of enamel by scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) point and mapping analyses, suggesting a fluorapatite mineralogy of enamel.
Słowa kluczowe
Rocznik
Strony
art. no. 26
Opis fizyczny
Bibliogr. 72 poz., fot., rys., tab.
Twórcy
  • Jagiellonian University in Kraków, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland
  • Jagiellonian University in Kraków, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland
Bibliografia
  • 1. Antczak, M., Bodzioch, A., 2018. Ornamentation of the dermal bones of Metoposaurus krasiejowensis and its ecological implications. PeerJ, 6: e5267.
  • 2. Benton, M.J., 2015. Vertebrate Palaeontology. John Wiley and Sons, Bristol.
  • 3. Bilan, W., 1976. The stratigraphy of the Upper Triassic deposits of the eastern margin of the Upper Silesian Coal Basin (in Polish with English summary). Zeszyty Naukowe AGH, Geologia, 2: 4-73.
  • 4. Bodzioch, A., Kowal-Linka, M., 2012. Unraveling the origin of the Late Triassic multitaxic bone accumulation at Krasiejów (S Poland) by diagenetic analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 346: 25-36.
  • 5. Bystrow, A.P., 1938. Zahnstruktur der Labyrinthodonten. Acta Zoologica, 19: 387-425.
  • 6. Bystrow, A.P., 1939. Zahnstruktur der Crossopterygier. Acta Zoologica, 20: 286-338.
  • 7. Carlson, S.J., 1990. Vertebrate dental structures. In: Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (ed. J.G. Carter), 5: 235-260. Wiley.
  • 8. Carnot, M.A., 1893. Recherches sur la composition générale et la teneur en fluor des os modernes et des os fossiles des différents âges. Ch. Dunod.
  • 9. Chase, J.N., 1963. The labyrinthodont dentition. Breviora, 187: 1-13.
  • 10. Chowdhury, T.R., 1965. A new metoposauroid amphibian from the Upper Triassic Maleri Formation of Central India. Philosophical Transactions of the Royal Society London, B, 250: 1-52.
  • 11. Credner, H., 1893. Zur Histologie der Faltenzähne paläozoischer Stegocephalen. Abhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften, 33: 475-555.
  • 12. Daculsi, G., Kerebel, L.M., 1980. Ultrastructural study and comparative analysis of fluoride content of enameloid in sea-water and fresh-water sharks. Archives of Oral Biology, 25: 145-151.
  • 13. Dadlez, R., Marek, S., Pokorski, J., 2000. Geological map of Poland without Cenozoic sediments in scale 1:1000 000. Polish Geological Institute, Warszawa.
  • 14. De Renzi, M., Manzanares, E., Marin-Monfort, M.D., Botella, H., 2016. Comments on “Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks” by A. Lübke, J. Enax, K. Loza, O. Prymak, P. Gaengler, H.-O. Fabritius, D. Raabe and M. Epple, RSC Advances, 2015, 5: 61612. RSC Advances, 6: 74384-74388.
  • 15. Dean, M.C., 2000. Incremental markings in enamel and dentine: what they can tell us about the way teeth grow. In: Development, Function and Evolution of Teeth (eds. M.F. Teaford, M.M. Smith and M.W.J. Ferguson). Cambridge University Press, Cambridge.
  • 16. Dutuit, J.M., 1976. Introduction á l'étude paléontologique du Trias continental marocain. Description des premiers Stegocephales recueillis dans le couloir d'Argana (Atlas occidental). Memoires du Museum National d'Histoire Naturelle, Paris, Series C, 36: 1-253.
  • 17. Dzik, J., 2003. A beaked herbivorous archosaur with dinosaur affinities from the early Late Triassic of Poland. Journal of Vertebrate Paleontology, 23: 556-574.
  • 18. Dzik, J., Sulej, T., 2007. A review of the early Late Triassic Krasiejów biota from Silesia, Poland. Palaeontologia Polonica, 64: 1-27.
  • 19. Dzik, J., Sulej, T., 2016. An early Late Triassic long-necked reptile with a bony pectoral shield and gracile appendages. Acta Palaeontologica Polonica, 61: 805-823.
  • 20. Dzik, J., Sulej, T., Kaim, A., Niedźwiedzki, R., 2000. Late Triassic graveyard of large Triassic tetrapods in the Opole Silesia (in Polish with English summary). Przegląd Geologiczny, 48: 226-235.
  • 21. Enault, S., Guinot, G., Koot, M.B., Cuny, G., 2015. Chondrichthyan tooth enameloid: past, present, and future. Zoological Journal of the Linnean Society, 174: 549-570.
  • 22. Erickson, G.M., 1996. Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line? Proceedings of the National Academy of Sciences, 93: 14623-14627.
  • 23. Fijałkowska-Mader, A., Heunisch, C., Szulc, J., 2015. Palynostratigraphy and palynofacies of the Upper Silesian Keuper. Annales Societatis Geologorum Poloniae, 85: 637-661.
  • 24. Fincham, A., Moradian-Oldak, J., Simmer, J.P., 1999. The structural biology of the developing dental enamel matrix. Journal of Structural Biology, 126: 270-299.
  • 25. Fraas, E., 1913. Neue Labyrinthodonten aus der schwäbischen Trias. Palaeontographica (1846-1933): 275-294.
  • 26. Gruntmejer, K., Konietzko-Meier, D., Bodzioch, A., 2016. Cranial bone histology of Metoposaurus krasiejowensis (Amphibia, Temnospondyli) from the Late Triassic of Poland. PeerJ, 4: e2685.
  • 27. Gruntmejer, K., Konietzko-Meier, D., Bodzioch, A., 2019. Morphology and preliminary biomechanical interpretation of mandibular sutures in Metoposaurus krasiejowensis (Temnospondyli, Stereospondyli) from the Upper Triassic of Poland. Journal of Iberian Geology, 45: 301-316.
  • 28. Gruszka, B., Zieliński, T., 2008. Evidence for a very low-energy fluvial system: a case study from the dinosaur-bearing Upper Triassic rocks of Southern Poland. Geological Quarterly, 52(3): 239-252.
  • 29. Hättig, K., Stevens, K., Thies, D., Schweigert, G., Mutterlose, J., 2019. Evaluation of shark tooth diagenesis-screening methods and the application of their stable oxygen isotope data for palaeoenvironmental reconstructions. Journal of the Geological Society, 176: 482-491.
  • 30. Heckeberg, N.S., Rauhut, O.W., 2020. Histology of spinosaurid dinosaur teeth from the Albian-Cenomanian of Morocco: implications for tooth replacement and ecology. Palaeontologia Electronica, 23: a48.
  • 31. Hunt, A.P., 1993. Revision of the Metoposauridae (Amphibia: Temnospondyli) and description of a new genus from Western North America. Museum of Northern Arizona Bulletin, 59: 67-97.
  • 32. Jalil, N.E., 1996. Les Vertébrés permiens et triassiques de la Formation d'Argana (Haut Atlas occidental): liste faunistique préliminaire et implications stratigraphiques. In: Le Permien et le Trias du Maroc: état des connaissance (ed. F. Medina): 227-250. Editions Pumag, Marrakesh, Morocco.
  • 33. Jewuła, K., Matysik, M., Paszkowski, M., Szulc, J., 2019. The late Triassic development of playa, gilgai floodplain, and fluvial environments from Upper Silesia, southern Poland. Sedimentary Geology, 379: 25-45.
  • 34. Keenan, S.W., 2016. From bone to fossil: a review of the diagenesis of bioapatite. American Mineralogist, 101: 1943-1951.
  • 35. Konietzko-Meier, D., Wawro, K., 2007. Mandibular dentition in the Late Triassic temnospondyl amphibian Metoposaurus. Acta Palaeontologica Polonica, 52: 213-215.
  • 36. Konietzko-Meier, D., Sander, M., 2013. Long bone history of Metoposaurs diagnosticus (Temnospondyli) from the late Trias- sic of Krasiejów (Poland) and its paleobiological implications. Journal of Vertebrate Paleontology, 33: 1003-1018.
  • 37. Konietzko-Meier, D., Shelton, C.D., Sander, P.M., 2016. The discrepancy between morphological and microanatomical patterns of anamniotic stegocephalian postcrania from the Early Permian Briar Creek Bonebed (Texas). Comptes Rendus Palevol, 15: 103-114.
  • 38. Kowalski, J., Bodzioch, A., Janecki, P., Ruciński, M., Antczak, M., 2019. Preliminary report on the microvertebrate faunal remains from the Late Triassic locality at Krasiejów, SW Poland. Annales Societatis Geologorum Poloniae, 89: 291-305.
  • 39. Laurin, M., Reisz, R.R., 1999. A new study of Solenodonsaurus janenschi, and a reconsideration of amniote origins and stegocephalian evolution. Canadian Journal of Earth Sciences, 36: 1239-1255.
  • 40. LeGeros, R.Z., Suga, S., 1980. Crystallographic nature of fluoride in enameloids of fish. Calcified Tissue International, 32: 169-174.
  • 41. Luebke, A., Enax, J., Loza, K., Prymak, O., Gaengler, P., Fabritius, H.O., Raabe, D., Epple, M., 2015. Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks. RSC Advances, 5: 61612-61622.
  • 42. MacDougall, M.J., LeBlanc, A.R.H., Reisz, R.R., 2014. Plicidentin in the Early Permian Parareptile Colobomycter pholeter, and its phylogenetic and functional significance among coeval members of the clade. PLOS One, 9: e96559.
  • 43. Nanci, A., 2008. Ten Cate's oral histology: development, structure and function. Seventh Edition. Elsevier Health Sciences, St Louis.
  • 44. Osborn, J.W., 1981. Dental Anatomy and Embryology, 1. Blackwell Scientific Publications, Oxford, Boston.
  • 45. Owen, R., 1841. On the teeth of species of the genus Labyrinthodon (Mastodonsaurus salamandroides, and Phytosaurus (?) of Jäger) from the German Keuper and the sandstone of Warwick and Leamington. Proceedings of the Geological Society of London, Volume 3. London.
  • 46. Owocki, K., Madzia, D., 2020. Predatory behaviour in mosasaurid squamates inferred from tooth microstructure and mineralogy. Cretaceous Research, 111: 104430.
  • 47. Paluh, D.J., Riddell, K., Early, C.M., Hantak, M.M., Jongsma, G.F., Keeffe, R.M., Silva, F.M., Nielsen, S.V., Vallejo-Pareja, M.C., Stanley, E.L., Blackburn, D.C., 2021. Rampant tooth loss across 200 million years of frog evolution. eLife, 10: e66926.
  • 48. Pander, Ch.H., 1860. Über die Saurodipterinen, Dendrodonten, Glyptolepiden und Cheirolepiden des Devonischen System. Buchdrückerei der kaiserlichen Akademie der Wissenschaften, St. Petersburg.
  • 49. Parsons, T.S., Williams, E.E., 1962. The teeth of amphibia and their relation to amphibian phylogeny. Journal of Morphology, 110: 375-389.
  • 50. Pawlak, W., Rozwalak, P., Sulej, T., 2022. Triassic fish faunas from Miedary (Upper Silesia, Poland) and their implications for understanding paleosalinity. Palaeogeography, Palaeoclimatology, Palaeoecology, 590: 110860.
  • 51. Peyer, B., 1968. Comparative Odontology. The University of Chicago Press.
  • 52. Reinhardt, L., Ricken, W., 2000. The stratigraphic and geochemical record of Playa Cycles: monitoring a Pangaean monsoonlike system (Triassic, Middle Keuper, S. Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 161: 205-227.
  • 53. Rinehart, L., Lucas, S., 2014. Tooth form and function in temno- spondyl amphibians: relationship of shape to applied stress. New Mexico Museum of Natural History and Science Bulletin, 61: 533-542.
  • 54. Ruta, M., Pisani, D., Lloyd, G.T., Benton, M.J., 2007. A supertree of Temnospondyli: cladogenetic patterns in the most speciesrich group of early tetrapods. Proceedings. Biological Sciences, 274: 3087-3095.
  • 55. Romer, A.S., Parsons, S.T., 1986. The Vertebrate Body. Saunders College Publishing, Philadelphia.
  • 56. Sengupta, D.P., 1992. Metoposaurus maleriensis Roy Chowdhury from the Tiki Formation of Son-Mahanadi Valley of Central India. Indian Journal of Geology, 64: 300-305.
  • 57. Schoch, R.R., 2013. The evolution of major temnospondyl clades: an inclusive phylogenetic analysis. Journal of Systematic Palaeontology, 11: 673-705.
  • 58. Schoch, R.R., 2019. The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls. Journal of Paleontology, 93: 137-156.
  • 59. Schultze, H.P., 1969. Die Faltenzähne der rhipidistiiden Crossopterygier der Tetrapoden und die Actinopterygier Gattung Lepisosteus. Palaeontographica Italica, 65: 63-137.
  • 60. Sulej, T., 2002. Species discrimination of the Late Triassic temnospondyl amphibian Metoposaurus diagnosticus. Acta Palaeontologica Polonica, 47: 535-546.
  • 61. Sulej, T., 2005. A new rauisuchian reptile (Diapsida: Archosauria) from the Late Triassic of Poland. Journal of Vertebrate Paleontology, 25: 78-86.
  • 62. Sulej, T., 2007. Osteology, variability, and evolution of Metoposaurus, a temnospondyl from the Late Triassic of Poland. Palaeontologia Polonica, 64: 29-139.
  • 63. Sulej, T., Majer, F., 2005. The temnospondyl amphibian Cyclotosaurus from the Upper Triassic of Poland. Palaeontology, 48: 157-170.
  • 64. Szulc, J., 2005. Sedimentary environments of the vertebrate-bearing Norian deposits from Krasiejów, Upper Silesia (Poland). Hallesches Jahrbuch für Geowissenschaften, R. B, 19: 161-170.
  • 65. Szulc, J., Racki, G., 2015. Grabowa Formation - the basic lithostratigraphic unit of the Upper Silesian Keuper (in Polish with English summary). Przegląd Geologiczny, 63: 103-113.
  • 66. Środoń, J., Szulc, J., Anczkiewicz, A., Jewuła, K., Banoe, M., Marynowski, L., 2014. Weathering, sedimentary, and diagenetic controls of mineral and geochemical characteristics of the vertebrate-bearing Silesian Keuper. Clay Minerals, 49: 569-594.
  • 67. Teschner, E., Konietzko-Meier, D., Sander, P., 2018. Variability of growth pattern observed in Metoposaurus krasiejowensis humeri and its biological meaning. Journal of Iberian Geology, 44: 99-111.
  • 68. Vitt, L.J., Caldwell, J.P., 2013. Herpetology: an Introductory Biology of Amphibians and Reptiles. Academic Press, Cambridge, Massachusetts.
  • 69. Warren, A.A., Davey, L., 1992. Folded teeth in temnospondyls - a preliminary study. Alcheringa, 16: 107-132.
  • 70. Warren, A., Turner, S., 2005. Tooth histology patterns in early tetrapods and the presence of “dark dentine”. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 96: 113-130.
  • 71. Whitenack, L., Simkins, D., Motta, P., 2011. Biology meets engineering: the structural mechanics of fossil and extant shark teeth. Journal of Morphology, 272: 169-179.
  • 72. Wierzbowski, H., Błażejowski, B., Tyborowski, D., 2019. Oxygen isotope profiles of uppermost Jurassic vertebrate teeth and oyster shells: a record of paleoenvironmental changes and animal habitats. Palaios, 34: 585-599.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30ccc71f-fa09-4575-a080-31441ff0bcd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.