PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seismic site characterization considering directional near‑field seismogenic active faults in Aswan area, Egypt

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aswan area in South Egypt experiences continuous seismic activity due to seismogenic active faults, particularly Kalabsha and Seiyal active EW faults. The seismic site characterization is not properly identified, although the presence of high-density distribution of earthquake stations. The present study investigates fourteen earthquake stations of the Egyptian National Seismic Network, as well as six microtremor measurement sites. We analyzed ground motions due to seismogenic active faults recorded at surface from these fourteen earthquake stations. We measured microtremors for up to 120 min with portable seismometers at six sites in the vicinity of the High Dam area. The horizontal-to-vertical spectral ratios of earthquakes (EHVSR) and microtremors (MHVSR), their plots as a function of frequency and direction of motion, and diffuse field inversion are used in the study. Therefore, we could provide an obvious understanding of the site characterization including resonance frequencies, directional amplifications, and back-calculated subsurface velocity structures at these stations and sites. We found three predominant amplification directions of NS, EW, and NE–SW due to the horizontal components of the seismic waves. These amplification directions are near-transversal ~ transversal to the NS and EW strikes of the active fault system in the study area. In time–frequency analyses of the records, this directionality is observed clearly for S-wave and surface wave time windows. We validated the diffuse field inversion process not only using fitting between observed and inverted EHVSRs and MHVSRs, but also using available geological 2D cross sections and hydrological information in Aswan area.
Czasopismo
Rocznik
Strony
1119--1148
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Geology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
  • Disaster Prevention Research Institute (DPRI), Kyoto University, Kyoto, Japan
autor
  • National Research Institute of Astronomy and Geophysics, Helwan, Cairo, Egypt
  • National Research Institute of Astronomy and Geophysics, Helwan, Cairo, Egypt
  • Geology Department, Faculty of Science, New Valley University, New Valley, Egypt
Bibliografia
  • 1. Bard PY, SESAME team (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation, SESAME European research project, WP12—Deliverable D23. 12, http://sesame-fp5.obs.ujfgrenoble.fr/Deliverables
  • 2. Ben-Zion Y (1998) Properties of seismic fault zone waves and their utility for imaging low-velocity structure. J Geophys Res 103(12):567–585
  • 3. Ben-Zion Y, Aki K (1990) Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone. Bull Seismol Soc Am 80:971–994
  • 4. Bonnefoy-Claudet S, Köhler A, Cornou C, Wathelet M, Bard PY (2008) Effects of love waves on microtremor H/V ratio. Bull Seismol Soc Am 98:288–300. https://doi.org/10.1785/0120070063
  • 5. Burjánek J, Moore JR, Yugsi-Molina FX, Fäh D (2012) Instrumental evidence of normal mode rock slope vibration. Geophys J Int 188(2):559–569. https://doi.org/10.1111/j.1365-246X.2011.05272.x
  • 6. Di Giulio G, Cara F, Rovelli A, Lombardo G, Rigano R (2009) Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy. J Geophys Res 114:B10308. https://doi.org/10.1029/2009JB006393
  • 7. Douglas J, Gehl P, Bonilla LF, Ge´lis C (2010) AJ model for mainland France. Pure Appl Geophys 167:1303–1315. https://doi.org/10.1007/s00024-010-0146-5
  • 8. EGSMA (Egyptian Geological Survey and Mining Authority), (1981) Geological map of Egypt scale1:2000000 EGSMA, Ministry of Industry and Mineral Resources, Cairo.
  • 9. Fäh D, Kind F, Giardini D (2001) A theoretical investigation of average H/V ratios. Geophys J Int 145:535–549. https://doi.org/10.1046/j.0956-540x.2001.01406.x
  • 10. Field EH, Jacob KH (1995) A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. Bull Seismol Soc Am 85(4):1127–1143
  • 11. Fohrmann M, Igel H, Jahnke G, Ben-Zion Y (2004) Guided waves from sources outside faults: an indication for shallow fault zone structure? Pure Appl Geophys 161:2125–2137
  • 12. García-Jerez A, Piña-Flores J, Sánchez-Sesma FJ, Luzón F, Perton M (2016) A computer code for forward computation and inversion of the H/V spectral ratio under the diffuse field assumption. Comput Geosci 97:67–78
  • 13. Guiraud RO, Bosworth W (1999) Phanerozoic geodynamic evolution of northeastern Africa and the northwestern Arabian platform. Tectonophysics 315(1):73–104
  • 14. Hamimi Z, Hagag W, Osman R, El-Bialy M, Abu El-Nadr I, Fadel M (2018) The active Kalabsha fault zone in Southern Egypt: detecting faulting activity using field-structural data and EMR-technique, and implications for seismic hazard assessment. Arab J Geosci 11:421. https:// doi. org/ 10. 1007/s12517-018-3774-1
  • 15. Hickman SH, Zoback MD, Ellsworth WL (2005) Structure and composition of the San Andreas fault zone at Parkfield: initial results from SAFOD Phase 1 and 2 EOS. Trans Am Geophys Union 83(47):237
  • 16. Igel H, Ben-Zion Y, Leary P (1997) Simulation of SH and P-SV wave propagation in fault zones. Geophys J Int 128:533–546
  • 17. Issawi B (1978) Geology of Nubia west area Western Desert, Egypt. Ann Geol Surv Egypt 8:237–253
  • 18. Issawi B(1968) The geology of Kurkur-Dungle area Geol. survey, Cairo, Egypt, paper No. 46, 102.
  • 19. Kakhki MK, Peters FC, Mansur WJ, SadidKhoii A, Rezaei S (2020) Deciphering site response directivity in landslide-prone slopes from ambient noise spectral analysis. Eng Geol 269:105542. https://doi.org/10.1016/j.enggeo.2020.105542
  • 20. Kawase H, Sánchez-Sesma FJ, Matsushima S (2011) The optimal use of horizontal-tovertical (H/V) spectral ratios of earthquake motions for velocity structure inversions based on diffuse field theory for plane waves. Bull Seism Soc Am 101(5):2001–2014. https://doi.org/10.1785/0120100263
  • 21. Kebeasy RM, Bayoumy AI, Gharib AA (1991) Crustal structure modeling for the northern part of the Aswan Lake area using seismic waves generated by and local earthquakes. J Geodyn 14(1–4):159–182
  • 22. Kim J, Sultan M (2002) Assessment of the long-term hydrologic impacts of Lake Nasser and related irrigation projects in South-western Egypt. J Hydrol 262(1–4):68–83. https:// doi. org/ 10.1016/S0022-1694(02)00013-6
  • 23. Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88:228–241
  • 24. Korneev VA, Nadeau RM, McEvilly TV (2003) Seismological studies at Parkfield IX: fault-zone imaging using guided wave attenuation. Bull Seism Soc Am 93:1415–1426
  • 25. Lermo J, Chávez-García FJ (1994) Are Microtremors useful in site response Evaluation? Bull Seismol Soc Am 84(5):1350–1364
  • 26. Li YG, Leary PC, Aki K, Malin P (1990) Seismic trapped modes in the Orville and san Andreas fault zones. Science 249:763–766
  • 27. Li YG, Aki K, Adams D, Hasemi A, Lee WHK (1994) Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992. J Geophys Res 99:11705–11722
  • 28. Li YG, Ellsworth WL, Thurber CH, Malin PE, Aki K (1997) Fault zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley California. Bull Seism Soc Am 87:210–221
  • 29. Li YG, Vidale JE, Cochran ES (2004) Low-velocity damaged structure of the San Andreas fault at Parkfield from fault zone trapped waves. Geophys Res Lett 31:L12S06. https://doi.org/10.1029/2003GL019044
  • 30. Margerin L, Campillo M, Van Tiggelen BA, Hennino R (2009) Energy partition of seismic coda waves in layered media: theory and application to Pinyon Flats Observatory. Geophys J Int 177(2):571–585
  • 31. Mekkawi M, Schnegg PA, Hamed TA, Elathy E (2005) Electrical structure of the tectonically active Kalabsha fault Aswan, Egypt. Earth Planet Sci Lett 240:764–773. https://doi.org/10.1016/j.epsl.2005.09.035
  • 32. Mohamed A, Lindholm C, Girgis M (2015) Site characterization and seismic site response study of the Sahary Area South Egypt. Acta Geodyn Geomater 12(180):427–436
  • 33. Mori Y, Matsushima S, Kawase H, Nagashima F (2015) Comparison of observed earthquake and microtremor horizontal-to-vertical spectral ratios and inversion of velocity structures based on their empirical ratios. J Jpn Assoc Earthq Eng 16(9):13–32 ([in Japanese with English abstract])
  • 34. Nagashima F, Matsushima S, Kawase H, Sánchez-Sesma FJ, Hayakawa T, Satoh T, Oshima M (2014) Application of horizontal-to-vertical (H/V) spectral ratios of earthquake ground motions to identify subsurface structures at and around the K-NET site in Tohoku, Japan. Bull Seism Soc Am 104:2288–2302. https://doi.org/10.1785/0120130219
  • 35. Omar KhA, El-Amin EM, Dahy SA, Ebraheem MO (2019) A study on the relation between recent induced seismicity and water level in the Northwestern part of Nasser lake Aswan—Egypt. Geotectonics 53(2):251–259. https://doi.org/10.1134/S0016852119020067
  • 36. OJ Ktenidou (2010) Experimental and theoretical study of seismic ground motion in the city of Aegion, Greece, focusing on local site and topographic effects, PhD thesis, Department of Civil Engineering, Aristotle University Thessaloniki, Greece, http://invenio.lib.auth.gr/record/124050/files/GRI-2010-5489.pdf
  • 37. Panzera F, Lombardo G, Longo E, Langer H, Branca S, Azzaro R, Cicala V, Trimarchi F (2017) Exploratory seismic site response surveys in a complex geologic area: a case study from Mt. Etna volcano (southern Italy). Nat Hazards 86:385–399. https://doi.org/10.1007/s11069-016-2517-4
  • 38. Panzera F, D’Amico S, Colica E, Viccaro M (2019) Ambient vibration measurements to support morphometric analysis of a pyroclastic cone. Bull Volcanol 81(12):74. https://doi.org/10.1007/s00445-019-1338-1
  • 39. Panzera F, Tortorici G, Romagnoli G, Marletta G, Catalano S (2020) Empirical evidence of orthogonal relationship between directional site effects and fracture azimuths in an active fault zone: the case of the Mt Etna lower eastern flank. Eng Geol 279:105900. https://doi.org/10.1016/j.enggeo.2020.105900
  • 40. Piña-Flores J, Perton M, García-Jerez A, Carmona E, Luzón F, Molina-Villegas JC, Sánchez-Sesma FJ (2017) The inversion of spectral ratio H/V in a layered system using the diffuse field assumption (DFA). Geophys J Int 208(1):577–588
  • 41. Piña-Flores J, Cárdenas-Soto M, García-Jerez A, Campillo M, Sánchez-Sesma FJ (2021) The search of diffusive properties in ambient seismic noise. Bull Seismol Soc Am 111:1650–1660
  • 42. Pischiutta M, Fondriest M, Demurtas M, Magnoni F, Di Toro G, Rovelli A (2017) Structural control on the directional amplification of seismic noise (Campo Imperatore, Central Italy). Earth Planet Sci Lett 471:10–18. https://doi.org/10.1016/j.epsl.2017.04.017
  • 43. Rigano R, Cara F, Lombardo G, Rovelli A (2008) Evidence of ground motion polarization on fault zones of Mount Etna volcano. J Geophys Res 113:B10306. https://doi.org/10.1029/2007JB005574
  • 44. Sánchez-Sesma FJ, Rodríguez M, Iturrarán-Viveros U, Luzón F, Campillo M, Margerin L, García-Jerez A, Suarez M, Santoyo MA, Rodríguez-Castellanos A (2011a) A theory for microtremor H/V spectral ratio: application for a layered medium. Geophys J Int Exp Lett 186(1):221–225. https:// doi. org/10.1111/j.1365-246X.2011.05064.x
  • 45. Sánchez-Sesma FJ, Weaver RL, Kawase H, Matsushima S, Luzón F, Campillo M (2011b) Energy partitions among elastic waves for dynamic surface loads in a semi-infinite solid. Bull Seismol Soc Am 101(4):1704–1709
  • 46. Shapiro NM, Campillo M, Margerin L, Singh SK, Kostoglodov V, Pacheco J (2000) The energy partitioning and the diffusive character of the seismic coda. Bull Seismol Soc Am 90:655–665
  • 47. Stern RJ, Abdelsalam MG (1996) The origin of the great bend of the Nile from SIR-C/X-SAR imagery. Science 274(5293):1696–1698. https://doi.org/10.1126/science.274.5293.1696
  • 48. Thabet M (2019) Site-specific relationships between bedrock depth and hvsr fundamental resonance frequency using KiK-NET data from Japan. Pure Appl Geophys 176:4809–4831. https://doi.org/10.1007/s00024-019-02256-7
  • 49. Thabet M (2021a) Improved site-dependent statistical relationships of VS and resonant frequency versus bedrock depth in Japan. J Seismol 25:1441–1459. https:// doi. org/10.1007/s10950-021-10038-9
  • 50. Thabet M (2021b) Applicability of a proposed groundwater level determination approach for the K-NET in Japan. Near Surf Geophys 19(4):447–463. https://doi.org/10.1002/nsg.12162
  • 51. Thurmond AK, Allison K, Stern RJ, Mohamed G, Abdelsalam MG, Kent D, Nielsen C, Abdeen MM, Hinz E (2004) The Nubian swell. J Afr Earth Sci 39:401–407
  • 52. Tortorici G, Romagnoli G, Grassi S, Imposa S, Lombardo G, Panzera F, Catalano S (2019) Quaternary negative tectonic inversion along the sibillini Mts. Thrust zone: the arquata del tronto case history (Central Italy). Environ Earth Sci 78(1):37. https://doi.org/10.1007/s12665-018-8021
  • 53. Villani F, D’Amico S, Panzera F, Vassallo M, Bozionelos G, Farrugia D, Galea P (2018) Shallow high-resolution geophysical investigation along the western segment of the victoria lines fault (Island of Malta). Tectonophysics 724–725:220–233. https://doi.org/10.1016/j.tecto.2018.01.010
  • 54. Wathelet M, Chatelain J-L, Cornou C, Di Giulio G, Guillier B, Ohrnberger M, Savvaidis A (2020) Geopsy: a user-friendly open-source tool set for ambient vibration processing. Seismol Res Lett 91(3):1878–1889. https://doi.org/10.1785/0220190360
  • 55. Weaver RL (1985) Diffuse elastic waves at a free surface. J Acoust Soc Am 78(1):131–136
  • 56. Woodward-Clyde (1985) Identification of earthquake sources and estimation of magnitudes and recurrence intervals. Internal Report High and Aswan Dams Authority
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30cc9358-62fd-4f02-b852-a8e79a16f6b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.