PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acid Mine Drainage Prevention through the Dry Coating Method Using Fly Ash and Bottom Ash

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acid mine drainage poses a significant challenge in open-pit coal mining, particularly in Indonesia, necessitating the development of effective prevention and control methods. This research aimed to assess the impact of fly ash (FA) and bottom ash (BA) coating on the mixing ratio of potentially acid-forming (PAF) and non-acid-forming (NAF) materials using a leaching column over an 8-week period. The results revealed a trend of increasing pH values and decreasing sulfate and metal concentrations in the leachate. Mixing 25% FABA in both PAF scenarios produced leachate with total concentrations of S, Fe, and Mn at 0.026 mg/L, 0.117 mg/L, and 0.677 mg/L, respectively, with a pH close to neutral (6.28). Kinetic tests indicate TDS and EC values in the resulting leachate at 1221 ppm and 2442 μs/m. This study demonstrated that PAF coating using NAF and the fly ash bottom ash (FABA) is an effective method for preventing or minimizing the generation of acid mine drainage.
Twórcy
  • Environmental Management Program, Graduate School, Universitas Sriwijaya, Palembang 30139, South Sumatera, Indonesia
autor
  • Soil Science Department, Faculty of Agriculture, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
autor
  • Agricultural Engineering Department, Faculty of Agriculture, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
Bibliografia
  • 1. Abfertiawan M.S., Palinggi Y., Handajani M., Pranoto K. & Atmaja A. 2020. Evaluation of non-acid-forming material layering for the prevention of acid mine drainage of pyrite and jarosite. Heliyon 6(11): e05590. https://doi.org/10.1016/j.heliyon.2020.e05590
  • 2. Alegbe M.J., Ayanda O.S., Ndungu P., Nechaev A., Fatoba O.O. & Petrik L.F. 2019. Physicochemical characteristics of acid mine drainage, simultaneous remediation and use as feedstock for value added products. Journal of Environmental Chemical Engineering 7(3): 103097. https://doi.org/10.1016/j.jece.2019.103097
  • 3. Fan R., Short M.D., Zeng S.J., Qian G., Li J., Schumann R.C., Kawashima N., Smart R.S.C. & Gerson A.R. 2017. The formation of silicate-stabilized passivating layers on pyrite for reduced acid rock drainage. Environmental Science and Technology 51(19): 11317–11325. https://doi.org/10.1021/acs.est.7b03232
  • 4. Gwenzi W., Mushaike C.C., Chaukura N. & Bunhu T. 2017. Entfernung von Spurenmetallen aus saurem Grubenwasser durch sequenzielle Kombination aus Adsorbenzien aus Kohleaschen und Pflanzenbehandlung mit Bunch-Gras Vetiver [Vetiveria zizanioides L]. Mine Water and the Environment 36(4): 520–531. https://doi.org/10.1007/s10230-017-0439-3
  • 5. Li X., Hiroyoshi N., Tabelin C.B., Naruwa K., Harada C. & Ito M. 2019. Suppressive effects of ferric-catecholate complexes on pyrite oxidation. Chemosphere 214: 70–78. https://doi.org/10.1016/j.chemosphere.2018.09.086
  • 6. Matsumoto S., Ishimatsu H., Shimada H., Sasaoka T., Kusuma G.J. & Gautama R.S. 2017. Placement of waste rocks in waste dump for prevention of acid mine drainage (AMD) by cover system in open cast coal mine: Effects of water quality on AMD. Inzynieria Mineralna 2017(1): 97–102.
  • 7. Miller J.R., Gannon J.P. & Corcoran K. 2019. Concentrations, mobility, and potential ecological risks of selected metals within compost amended, reclaimed coal mine soils, tropical South Sumatra, Indonesia. AIMS Environmental Science 6(4): 298–325. https://doi.org/10.3934/environsci.2019.4.298
  • 8. Moncur M.C., Ptacek C.J., Lindsay M.B.J., Blowes D.W. & Jambor J.L. 2015. Long-term mineralogical and geochemical evolution of sulfide mine tailings under a shallow water cover. Applied Geochemistry 57: 178. https://doi.org/10.1016/j.apgeochem. 2015.01.012
  • 9. Nfissi S., Alikouss S., Zerhouni Y., Hakkou R., Benzaazoua M. & Bouzahzah H. 2017. Control of acid mine drainage from an abandoned mine in Morocco by using cement kiln dust and fly ash as amendments. Journal of Materials and Environmental Sciences 8(12): 4457–4466.
  • 10. Nidheesh P.V., Gandhimathi R., Ramesh S.T. & Singh T.S.A. 2012. Adsorption and desorption characteristics of crystal violet in bottom ash column. Journal of Urban and Environmental Engineering 6(1): 18–29. https://doi.org/10.4090/juee.2012.v6n1.018029
  • 11. Orakwue E.O., Asokbunyarat V., Rene E.R., Lens P.N.L. & Annachhatre A. 2016. Adsorption of iron(II) from acid mine drainage contaminated groundwater using coal fly ash, coal bottom ash, and bentonite clay. Water, Air, and Soil Pollution 227(3). https://doi.org/10.1007/s11270-016-2772-8
  • 12. Roychowdhury A., Sarkar D. & Datta R. 2015. Remediation of acid mine drainage-impacted water. Current Pollution Reports 1(3): 131–141. https://doi.org/10.1007/ s40726-015-0011-3
  • 13. Said N.I. 2018. Teknologi Pengolahan Air Asam Tambang Batubara “Alternatif Pemilihan Teknologi”. Jurnal Air Indonesia 7(2). https://doi.org/10.29122/ jai.v7i2.2411
  • 14. Sephton M.G. & Webb J.A. 2019. The role of secondary minerals in remediation of acid mine drainage by Portland cement. Journal of Hazardous Materials 367(September 2018): 267–276. https://doi.org/10.1016/j.jhazmat.2018.12.035
  • 15. Sephton M.G., Webb J.A. & McKnight S. 2019. Applications of Portland cement blended with fly ash and acid mine drainage treatment sludge to control acid mine drainage generation from waste rocks. Applied Geochemistry 103(January): 1–14. https://doi.org/10.1016/j.apgeochem.2019.02.005
  • 16. Smiciklas I., Jankovic B., Jovic M., Maletaškic J., Manic N. & Dragovic S. 2023. Performance Assessment of Wood Ash and Bone Char for Manganese Treatment in Acid Mine Drainage. Metals 13(10): 1665.
  • 17. Smith J., Sheridan C., van Dyk L. & Harding K.G. 2022. Critical evaluation of the chemical composition of acid mine drainage for the development of statistical correlations linking electrical conductivity with acid mine drainage concentrations. Environmental Advances 8(April): 100241. https://doi.org/10.1016/j.envadv. 2022.100241
  • 18. Win T.S., Dwiki S., Hamanaka A., Sasaoka T., Shimada H., Mastumoto S. & Kusuma G.J. 2020. Application of fly ash and organic material as dry cover system in prevention of acid mine drainage generation. Journal of Geoscience and Environment Protection 08(05): 56–64. https://doi.org/10.4236/gep.2020.85004
  • 19. Yang Y., Li B., Li T., Liu P., Zhang B. & Che L. 2023. A review of treatment technologies for acid mine drainage and sustainability assessment. Journal of Water Process Engineering 55 (April). https://doi.org/10.1016/j.jwpe.2023.104213
  • 20. Zhang M. & Wang H. 2017. Utilization of Bactericide technology for pollution control of acidic coal mine waste. Advances in Engineering Research: 667–670.
  • 21. Zhou Y., Short M.D., Li J., Schumann R.C., Smart R.S.C., Gerson A.R. & Qian G. 2017. LUT Scientific and Expertise Publications 13th International Mine Water Association Congress. Mine Water and Circular Economy: 1341–1347.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30cba4bb-a59e-4879-832c-48467edb4326
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.