PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of fatigue behaviour on fracture in the 4th gear of a pick-up truck

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper aims to investigate the effect of fatigue behaviour on fracture in the 4th gear (helical gear) of a pick-up truck. Design/methodology/approach: Fracture on the failed helical gear is characterised through metallographic and fractographic analyses. Mechanical testing and finite element simulation are employed to assess the factors contributing to the gear failure. Findings: The microstructure observed in the case layer was martensite, leading to a hard and brittle surface due to carburising. Failure initiated at the crack origins and then propagated to the instant fracture zone in the core of the gear tooth. Multiple crack origins accelerated the development of ratchet marks, attributed to the high intensity of stress exerted on the workpiece and ultimately leading to a substantial final overload zone. Hardness decreased with increasing depth of the gear surface due to the effects of carburising and hardening treatments. Stress was initiated from the contact stress on the gear tooth surface and transformed into bending stress along the central axis of the gear. The contact stresses became critical when the torque surpassed the contact strength of the material. Research limitations/implications: Simulation samples must be experimentally validated to improve the results. Practical implications: Metallographic and fractographic analyses are crucial in elucidating the wear mechanisms in mechanical components. Additionally, finite element analysis can indicate the influence of stress on the mechanical part, providing insights that can effectively guide the limiting transmission power to ensure extended service life. Originality/value: Cost reduction, time for analysis, and finding the root causes of the problem should be conducted to improve the implementation process, leading to high product quality.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • Mechanical and Industrial Engineering Department, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
autor
  • Mechanical and Industrial Engineering Department, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
  • Mechanical and Industrial Engineering Department, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
  • Mechanical and Industrial Engineering Department, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
autor
  • Mechanical and Industrial Engineering Department, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
  • Mechanical and Industrial Engineering Department, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
Bibliografia
  • [1] A.M. Heyes, Automotive component failure, Engineering Failure Analysis 5/2 (1998) 129-141. DOI: https://doi.org/10.1016/S1350-6307(98)00010-7
  • [2] O. Hrevtsev, N. Selivanova, P. Popovych, L. Poberezhny, V. Sakhno, O.Shevchuk, L. Poberezhna, I. Murovanyi, A. Hrytsanchuk, O. Romanyshyn, Simulation of thermomechanical processes in disc brakes of wheeled vehicles, Journal of Achievements in Materials and Manufacturing Engineering 104/1 (2021) 11-20. DOI: https://doi.org/10.5604/01.3001.0014.8482
  • [3] O. Hrevtsev, N. Selivanova, P. Popovych, L. Poberezhny, V.Ya. Brych, Yu. Rudyak, O. Shevchuk, N. Bakulina, R. Rozum, M. Buriak, Stress-strain state simulation of non-uniformly heated elements of components and assemblies of automotive, Journal of Achievements in Materials and Manufacturing Engineering 115/1 (2022) 26-32. DOI: https://doi.org/10.5604/01.3001.0016.2339
  • [4] L.-H. Zhao, Q.-K. Xing, J.-Y. Wang, S.-L. Li, S.-L. Zheng, Failure and root cause analysis of vehicle drive shaft, Engineering Failure Analysis 99 (2019) 225-234. DOI: https://doi.org/10.1016/j.engfailanal.2019.02.025
  • [5] B. Karpuschewski, M. Beutner, J. Eckebrecht, J. Heinzel, T. Husemann, Surface integrity aspects in gear manufacturing, Procedia CIRP 87 (2020) 3-12. DOI: https://doi.org/10.1016/j.procir.2020.05.112
  • [6] R.S. Miranda, C. Cruz, N. Cheung A.P.A. Cunha, Fatigue Failure Analysis of a Speed Reduction Shaft, Metals 11/6 (2021) 856. DOI: https://doi.org/10.3390/met11060856
  • [7] V. Handikherkar, S. Dhangar, S. Patil, V.M. Phalle, Stress Analysis of Parallel Misaligned Spur Gear Pair, Proceedings of the International Conference on Advances in Thermal Systems, Materials and Design Engineering “ATSMDE2017”, Mumbai, India, 2017, 1-7.
  • [8] A. Shehata, M.A. Adnan, O.D. Mohammed, Modeling the effect of misalignment and tooth microgeometry on helical gear pairs in mesh, Engineering Failure Analysis 106 (2019) 104190. DOI: https://doi.org/10.1016/j.engfailanal.2019.104190
  • [9] M. Molaie, F.S. Samani, F. Pellicano, Spiral Bevel Gears Nonlinear Vibration Having Radial and Axial Misalignments Effects, Vibration 4/3 (2021) 666-678. DOI: https://doi.org/10.3390/vibration4030037
  • [10] P.J.L. Fernandes, C. McDuling, Surface contact fatigue failures in gears, Engineering Failure Analysis 4/2 (1997) 99-107. DOI: https://doi.org/10.1016/S1350- 6307(97)00006-X
  • [11] P .J .L. Fernandes, Tooth bending fatigue failures in gears, Engineering Failure Analysis 3/3 (1996) 219-225. DOI: https://doi.org/10.1016/1350-6307(96)00008-8
  • [12] K. Kishore, A. Sharma, G. Mukhopadhyay, Failure Analysis of a Gearbox of a Conveyor Belt, Journal of Failure Analysis and Prevention 20 (2020) 1237-1243. DOI: https://doi.org/10.1007/s11668-020-00928-4
  • [13] H. Liu, H. Liu, C. Zhu, R.G. Parker, Effects of lubrication on gear performance: A review, Mechanism and Machine Theory 145 (2020) 103701. DOI: https://doi.org/10.1016/j.mechmachtheory.2019.103701
  • [14] D.K. Pandey, H.-C. Lim, Pinion Failure Analysis of a Helical Reduction Gearbox in a Kraft Process, Applied Sciences 10/8 (2020) 2935. DOI: https://doi.org/10.3390/app10082935
  • [15] C.O.F.T, Ruchert, C.I.S. Maciel, A.E.A. Chemin, Sub case origin fatigue in teeth of helical gear of a TA 67n turbo reducer, Engineering Failure Analysis 108 (2020) 104286. DOI: https://doi.org/10.1016/j.engfailanal.2019.104286
  • [16] F. Zhao, X. Ding, X. Fan, R. Cui, Y. Li, T. Wang, Contact fatigue failure analysis of helical gears with non-entire tooth meshing tests, Metals 8/9 (2018) 693. DOI: https://doi.org/10.3390 /met8090693
  • [17] W. Feng, Z. Feng, L. Mao, Failure analysis of a secondary driving helical gear in transmission of electric vehicle, Engineering Failure Analysis 117 (2020) 104934. DOI: https://doi.org/10.1016/j.engfailanal.2020.104934
  • [18] Q. Xiaofeng, L. Jie, Z. Xingguo, F. Li, P. Ruiqiang, Fracture failure analysis of transmission gear shaft in a bidirectional gear pump, Engineering Failure Analysis 118 (2020) 104886. DOI: https://doi.org/10.1016/j.engfailanal.2020.104886
  • [19] W.D. Callister Jr., Materials science and engineering an introduction. 7th Edition, John Wiley and Sons, New York, 2007.
  • [20] Japanese Steels and Alloys, Japanese steel grading – SCM Grades – SCM420. Available from: http://steeljis.com/jis_steel_datasheet.php?name_id=15
  • [21] Z. Yu, X. Xu, Failure investigation of a truck diesel engine gear train consisting of crankshaft and camshaft gears, Engineering Failure Analysis 17/2 (2010) 537-545. DOI: https://doi.org/10.1016/j.engfailanal.2009.10.003
  • [22] L. Zheng, T. Yang, S. Xue, G. Li, X. Liu, Fracture failure analysis of the teeth of conjunction gear made of 20MnCr5S steel, Engineering Failure Analysis 134 (2022) 106006. DOI: https://doi.org/10.1016/j.engfailanal.2021.106006
  • [23] R. Budynas, K. Nisbett, Shigley’s Mechanical Engineering Design, 10th Edition, McGraw-Hill, New York, 2014.
  • [24] S.R. Schmid, B.J. Hamrock, B.O. Jacobson, Fundamentals of Machine Elements, 3rd Edition, CRC Press, Boca Raton, 2014.
  • [25] P. Kulkarni, H. Yaragudri, M.A. Umarfarooq, Contact Stress Analysis and Optimization of Bevel Gear Pairs by Theoretical and FEA, International Journal of Latest Technology in Engineering, Management and Applied Science 6/8 (2017) 112-121.
  • [26] V. Boonmag, A. Phukaoluan, O. Wisesook, G. Pluphrach, Comparison of Bending Stress and Contact Stress of Helical Gear Transmission Using Finite Element Method, International Journal of Mechanical Engineering and Robotics Research 8 (2019) 99-103. DOI: https://doi.org/10.18178/ijmerr.8.1.99-103
  • [27] G. Vukelica, D. Pastorcicb, G. Vizentina, Z. Bozicc, Failure investigation of a crane gear damage, Engineering Failure Analysis 115 (2020) 104613. DOI: https://doi.org/10.1016/j.engfailanal.2020.104613
  • [28] M. Wiater, G. Chladek, J. Żmudzki, FEM numerical simulation of contact stresses between driving shaft and hub impeller of fuel pump, Journal of Achievements in Materials and Manufacturing Engineering 113/1 (2022) 13-21. DOI: https://doi.org/10.5604/01.3001.0016.0941
  • [29] G. Popov, V. Zubanov, E. Goriachkin, A. Scherban, A.A. Shvyrev, Verification of a Numerical Model of a Two-Stage HPT of a Modern GTE for Civil Aviation, International Journal of Mechanical Engineering and Robotics Research 12/2 (2023) 78-83. DOI: https://doi.org/10.18178/ijmerr.12.2.78-83
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30c5e79e-2163-4879-b6f1-0d402d98578a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.