PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study of hydroxyapatite behaviour during sintering of 316L steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
316L stainless steel – hydroxyapatite composite biomaterials with different hydroxyapatite weight fraction in the composite were investigated. Hydroxyapatite (HAp – Ca10(PO4)6(OH)2) is well known biomaterial. HAp reveals excellent chemical and biological affinity with bony tissues. On the other hand hydroxyapatite shows low mechanical properties. The combination of very good biocompatibility of hydroxyapatite and high mechanical properties of stainless steel seems to be a good solution. In presented research natural origin hydroxyapatite and 316L austenitic stainless steel were used. In this work, metal-ceramics composites were fabricated by the powder metallurgy technology (involving pressing and sintering process). Sintering was carried out at 1250oC in hydrogen atmosphere. The density, porosity and hardness were investigated. Metallographic microscope and SEM were carried out in order to investigate the microstructure. The horizontal NETZSCH DIL 402E dilatometer was used to evaluate the dimensional changes and phenomena occurring during sintering. The research displayed that physical properties of sintered 316L-HAp composites decrease with increase of hydroxyapatite content. Microstructure of investigated composites consists of austenitic and probably inclusions of hydroxyapatite and heterogeneous eutectic occurring on the grain boundaries. It was shown that amount of hydroxyapatite in the powder mixtures influence the dimensional changes occurring during sintering.
Rocznik
Strony
235--240
Opis fizyczny
Bibliogr. 14 poz., il., tab., wykr.
Twórcy
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Materials Engineering, Al. Jana Pawła II 37, 31-864, Krakow, Poland
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Materials Engineering, Al. Jana Pawła II 37, 31-864, Krakow, Poland
Bibliografia
  • [1] M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods, Science and Technology of Advenced Materials 4 (2003) 445-454.
  • [2] M. Knepper, S. Moricca, B.K. Milthorpe, Stability of hydroxyapatite while processing short-fibre reinforced hydroxyapatite ceramics, Biomaterials (1997), Vol. 18, no 23, 1523-1529.
  • [3] J. M. Ruan, J.P. Zou, Z.C. Zhou, Hydroxyapatite-316L stainless steel fibre composite biomaterials fabricated by hot pressing, Powder Metallurgy, 2006, Vol. 49, no 1, 62-65.
  • [4] X. Miao, Observation of microcracks formed in HA-316L composites, Materials Letters 57 (2003), 1848-1853.
  • [5] J.-H. Lin et al., In vitro study of bone-like apatite coatings on metallic fiber braids, Journal of Materials Processing Technology 192–193 (2007) 97–100.
  • [6] M. H. Fathi et al., In vitro corrosion behavior of bioceramic, metallic and bioceramic-metalic coated stainless steel dental implants, Dental Materials, 19 (2003) 188-198.
  • [7] S. Kannan, A. Balamurugan, S. Rajeswari, Hydroxyapatite coatings on sulfuric acid treated type 316L SS and its electrochemical behaviour in Ringer’s solution, Materials Letters 57 (2003) 2382–2389.
  • [8] M. Janus, M. Faryna, K. Haberko, A. Rakowska, T. Panz, Chemical and microsrtustural characterization of natural hydroxyapatite derived from pig bones, Microchim Acta, Vol. 161, no 3-4, June 2008, 349-353.
  • [9] K. Haberko, Natural hydroxyapatite – its behaviour during heat treatment, Journal of the European Ceramic Society, Vol. 26, 2006, pp. 537-542.
  • [10] H. B. Guo, X. Miao, Y. Chen, P. Cheang, K.A. Khor, Characterization of hydroxyapatite- and bioglass-316L fibre composities prepared by spark plasma sintering, Materials Letters, 58 (2004) 304-307.
  • [11] M. Knepper, B. K. Milthorpe, S. Moricca, Interdiffusion in short-fibre reinforced hydroxyapatite ceramics, Journal of Materials Science: Materials in Medicine, 9 (1998) 589-596.
  • [12] Sobczak, Z. Kowalski, Hydroxyapatite materials applied in implantology, Czasopismo Techniczne, z. 1-Ch/2007, 149-158, (in Polish).
  • [13] Szewczyk-Nykiel, J. Kazior, M. Nykiel, Characterization of AISI 316L– hydroxyapatite composite biomaterials, Czasopismo Techniczne, z.1, 2010,43-48, (in Polish).
  • [14] K. Niespodziana, K. Jurczyk, M. Jurczyk, The synthesis of titanium-hydroxyapatite nanocomposites biomaterials, Inżynieria Materiałowa, nr 3/2006, 636-639, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30b6c671-a475-4a46-8422-c6e1ee04f28c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.