Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, a queueing inventory system with finite sources of demands, retrial demands, service time, lead time, (s,S), replenishment policy, and demands search from the orbit was studied. When the lead time is exponentially distributed (resp. lead time is generally distributed), generalized stochastic Petri net (GSPN) (resp. Markov regenerative stochastic Petri net [MRSPN]) is proposed for this inventory system. The quantitative analysis of this stochastic Petri net model was obtained by continuous time Markov chain for the GSPN model (resp. the supplementary variable method for the MRSPN model). The probability distributions are obtained, witch allowed us to compute performance measures and the expected cost rate of the studied system.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220207
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, Faculty of Sciences, Research Unit LaMOS, University of Algiers, Algier, Algeria
autor
- Economic Sciences Faculty, Research Unit LaMOS, Bejaia University, Bejaia, Algeria
autor
- Operation Research Department, Research Unit LaMOS, Exact Sciences Faculty, Bejaia University, Bejaia, Algeria
autor
- Operation Research Department, Research Unit LaMOS, Exact Sciences Faculty, Bejaia University, Bejaia, Algeria
Bibliografia
- [1] K. Karthikeyan and R. Sudhesh, Recent review article on queueing inventory systems, Res. J. Pharmacy Technol. 9 (2016), no. 11, 2056–2066, DOI: https://doi.org/10.5958/0974-360X.2016.00421.2.
- [2] V. Yadavalli, K. Jeganathan, T. Venkatesan, S. Padmasekaran, and S. J. Kingsly, A retrial queueing-inventory system with j-additional options for service and finite source, ORiON 33 (2017), no. 2, 105–135, DOI: https://doi.org/10.5784/33-2-566.
- [3] D. K. Pandey, An attempt to understand the queueing-inventory system and the consideration of M∕M∕1∕1 queueing-inventory model with retrial of unsatisfied customers, J. Adv. Scholarly Res. Allied Education 16 (2019), no. 5, 335–344, http://ignited.in/I/a/89618.
- [4] P. S. Knopov and T. V. Pepelyaeva, Some multidimensional stochastic models of inventory control with a separable cost function, Cybernet. Sys. Anal. 58 (2022), 523–529, DOI: https://doi.org/10.1007/s10559-022-00487-6.
- [5] J. R. Artalejo, A. Krishnamoorthy, and M. J. Lopez-Herrero, Numerical analysis of (s,S) inventory systems with repeated attempts, Ann. Oper. Res. 141 (2006), 67–83, DOI: https://doi.org/10.1007/s10479-006-5294-8.
- [6] N. Anbazhagan, J. Wang, and D. Gomathi, Base stock policy with retrial demands, Appl. Math. Model. 37 (2013), no. 6, 4464–4473, DOI: https://doi.org/10.1016/j.apm.2012.09.005.
- [7] M. F. Neuts and M. F. Ramalhoto, A service model in which the server is required to search for customers, J. Appl. Probab. 21 (1984), 157–166, DOI: https://doi.org/10.2307/3213673.
- [8] J. R. Artalejo, V. C. Joshua, and A. Krishnamoorthy, An M/G/1 retrial queue with orbital search by the server, In: J. R. Artalejo and A. Krishnamoorthy, eds., Notable Publications Inc., NJ, 2002, pp. 41–54.
- [9] L. Ikhlef, O. Lekadir, and D. Aïssani, MRSPN analysis of semi-markovian finite source retrial queues, Ann. Oper. Res. 247 (2016), 141–167, DOI: https://doi.org/10.1007/s10479-015-1883-8.
- [10] A. Krishnamoorthy, S. S. Nair, and V. C. Narayanan, An inventory model with retrial and orbital search, In: S. R. S. Varadhan, ed. Bulletin of Kerala Mathematics Association, Special Issue, 2009, pp. 47–65.
- [11] J. Cui and J. Wang, A queueing-inventory system with registration and orbital searching processes, In: Proceedings of 2nd International Conference on Logistics, Informatics and Service Science, Z. Zhang et al, Eds., 2013, Springer-Verlag, Berlin Heidelberg.
- [12] A. Shophia Lawrence, B. Sivakumar, and G. Arivarignan, A perishable inventory system with service facility and finite source, Appl. Math. Model. 37 (2013), 4771–4786, DOI: https://doi.org/10.1016/j.apm.2012.09.018.
- [13] V. Yadavalli and K. Jeganathany, A finite source perishable inventory system with second optional service and server interruptions, ORiON 32 (2016), 23–53, DOI: https://doi.org/10.5784/32-1-528.
- [14] M. Bhuvaneshwari, Finite source inventory system with negative customers, Int. J. Math. Trends Technol. 52 (2018), no. 6, DOI: https://doi.org/10.14445/22315373/IJMTT-V56P556.
- [15] F. Wang, A. Bhagat, and T. Chang, Analysis of priority multi-server retrial queueing inventory systems with MAP arrivals and exponential services, Opsearch 54 (2017), 44–66, DOI: https://doi.org/10.1007/s12597-016-0270-9.
- [16] K. Sigman and D. Simchi-Levi, Light traffic heuristic for an M G 1∕ ∕ queue with limited inventory, Ann. Oper. Res. 40 (1992), 371–380, DOI: https://doi.org/10.1007/BF02060488.
- [17] D. Shajin and A. Krishnamoorthy, Stochastic decomposition in retrial queuing inventory system, RAIRO Oper. Res. 54 (2020), no. 1, 81–99, DOI: https://doi.org/10.1051/ro/2018118.
- [18] A. Krishnamoorthy, B. Lakshmy, and R. Manikandan, A survey on inventory models with positive service time, Opsearch. 48 (2011), no. 2, 153–169, DOI: https://doi.org/10.1007/s12597-010-0032-z.
- [19] L. Liu and T. Yang, An (s, S) random lifetime inventory model with a positive lead time, European 113 (1999), 52–63, DOI: https://doi.org/10.1016/S0377-2217(97)00426-8.
- [20] O. Berman and K. P. Sapna, Inventory management at service facilities for systems with arbitrarily distributed service times, Stoch. Models, 16 (2000), 343–360, DOI: https://doi.org/10.1080/15326340008807592.
- [21] A. Krishnamoorthy and K. P. Jose, An s S,( ) inventory system with positive lead-time, loss and retrial of customers, Stochastic Modell. Appl. 8 (2005), no. 2, 56–71.
- [22] P. Manuel, B. Sivakumar, and G. Arivarignan, A perishable inventory system with service facilities and retrial customers, Comput. Industr. Eng. 54 (2008), no. 3, 484–501, DOI: https://doi.org/10.1016/j.cie.2007.08.010.
- [23] W. K. Kruse, Waiting time in an S S− 1,( ) inventory system with arbitrarily distributed lead times, Oper. Res. 28 (1980), 348–352, DOI: https://doi.org/10.1287/opre.28.2.348.
- [24] S. Kalpakam and K. P. Sapna, (S - 1, S) Perishable systems with stochastic leadtimes, Math. Comput. Modell. 21 (1995), no. 6, 95–104, DOI: https://doi.org/10.1016/0895-7177(95)00026-X.
- [25] P. V. Ushakumari, On s S,( ) inventory system with random lead time and repeated demands, J. Appl. Math. Stochastic Anal. 1 (2006), 1–22, DOI: https://doi.org/10.1155/JAMSA/2006/81508.
- [26] H. Chen, L. Amodeo, F. Chu, and K. Labadi, Modeling and performance evaluation of supply chains using batch deterministic and stochastic petri nets, IEEE Trans. Automat. Sci. Eng. 2 (2005), 132–144, DOI: https://doi.org/10.1109/TASE. 2005.844537.
- [27] S. Tian, Q. Liu, X. Dai, and J. Zhang, A PD-type iterative learning control algorithm for singular discrete systems, Adv. Difference Equ. 2016 (2016), no. 1, 1–9, DOI: https://doi.org/10.1186/s13662-016-1047-4.
- [28] H. Baumann and W. Sandmann, Numerical solution of level dependent quasi-birth-and-death processes, Proc. Comput. Sci. 1 (2010), 1561–1569, DOI: https://doi.org/10.1016/j.procs.2010.04.175.
- [29] Y. Zhang, D. Yue, L. Sun, and J. Zuo, Analysis of the queueing-inventory system with impatient customers and mixed sales, Discrete Dyn. Nature Soc. 2022 (2022), 2333965, DOI: https://doi.org/10.1155/2022/2333965.
- [30] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models, Johns Hopkins University Press, Baltimore, 1981.
- [31] R. German, Markov regenerative stochastic Petri nets with general execution policies: supplementary variable analysis and a prototype tool, Performance Evaluation 39 (2000), 165–188, DOI: https://doi.org/10.1016/S0166-5316(99)00063-2.
- [32] E. Cinlar, Introduction to Stochastic Processes, Prentice-Hall, Englewood Cliffs, NJ, 1975.
- [33] D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Math. Proc. Cambridge Philosoph. Soc. 51 (1955), no. 3, 433–441, DOI: https://doi.org/10.1017/S0305004100030437.
- [34] P. O. Mohammed, J. A. T. Machado, J. L. G. Guirao, and R. P. Agarwal, Adomian decomposition and fractional power series solution of a class of nonlinear fractional differential equations, Mathematics 9 (2021), no. 9, 1070, DOI: https://doi.org/10.3390/math9091070.
- [35] L. Ikhlef, S. Hakmi, O. Lekadir, and D. Aïssani, Stochastic analysis of a queueing inventory system with customers search from the orbit using Petri nets, in: Conference: IEEE International Conference on Recent Advances in Mathematics and Informatics (ICRAMI’2021), 2021, DOI: https://doi.org/10.1109/ICRAMI52622.2021.9585961.
- [36] M. K. Molloy, Performance analysis using stochastic petri nets, IEEE Trans. Comput. 31 (1982), 913–917, DOI: https://doi.org/10.1109/TC.1982.1676110.
- [37] M. A. Marsan, G. Conte, and G. Balbo, A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems, ACM Trans. Comput. Syst. 2 (1984), no. 2, 93–122, DOI: https://doi.org/10.1145/190.191.
- [38] H. Choi, V. G. Kulkarni, and K. S. Trivedi, Markov regenerative stochastic petri nets, Performance Evaluation 20 (1994), 335–357, DOI: https://doi.org/10.1016/0166-5316(94)90021-3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30b58203-ee32-4463-84ba-9bd6409e0cc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.