Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper describes briefly some main aspects of the active feedback control system that has been developed and constructed for reduction of vibroacoustic emission of vibrating plate structures with arbitrary boundary conditions. Relations between the forms and frequency of the vibrations induced by an external harmonic excitation and the distribution of the generated acoustic pressure field are investigated using the developed numerical model based on indirect variational boundary element method. The aim of the control system is to minimize the sound pressure level in a given point of the ambient space. The system uses small, rectangle-shaped piezoelectric transducers as both sensors and actuators. The transducers are connected in a number of independent feedback loops, and the feedback gains are the control parameters which are optimized using the developed optimal control algorithm. The constructed active system has been tested for the stability and control performance during experimental research performed in an anechoic chamber. Results of experiments are presented in the paper, proving a high level of noise reduction and a good agreement with numerical predictions.
Słowa kluczowe
Rocznik
Tom
Strony
5--9
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
Bibliografia
- 1. C.R. Fuller, S.J. Elliott, P.A. Nelson, Active Control of Vibration, Academic Press, London, 1996.
- 2. L. Leniowska, Active methods for reduction of vibrations of circular plates, Aktywne metody redukcji drgań płyt kołowych [in Polish], Rzeszów University Press, Rzeszów, 2006.
- 3. CK. Lee, F.C. Moon, Modal sensors/actuators, Journal of Applied Mechanics 57, 434-441, 1990.
- 4. Ł. Nowak, T.G. Zieliński, Determining the optimal locations of piezoelectric transducers for vibroacoustic control of structures with general boundary conditions, Proceedings of the International Conference on Noise and Vibration Engineering, Leuven, 2012.
- 5. J.S. Vipperman, Adaptive piezoelectric sensoriactuators for active structural acoustic control, PhD thesis, Duke University, 1997.
- 6. J.S. Vipperman, R.L. Clark, Implementation of an adaptive piezoelectric sensoriactuator, J. Acoust. Soc. Amer. 34(10), 2102-2109, 1996.
- 7. Ł. Nowak, T.G. Zieliński, Acoustic Radiation of Vibrating Plate Structures Submerged in Water, Hydroacoustics 15, 163-170, 2012.
- 8. A.W. Leissa, M.S. Qatu, Vibrations of Continious Systems, McGraw-Hill, New York, 2011.
- 9. I. Małecki, Theory of acoustic waves and systems, Teoria fal i układów akustycznych [in Polish], PWN, Warszawa, 1964.
- 10. S. Kirkup, The Boundary Element Method in Acoustics, Integrated Sound Software, 2007.
- 11. L. Gaul, M. Kogl, M. Wagner, Boundary Element Methods for Engineers and Scientists, Springer, 2003.
- 12. P. Jabłoński, Boundary Element Method in Electromagnetic Field Analysis, Metoda Elementów Brzegowych w Analizie Pola Elektromagnetycznego [in Polish], Częstochowa Technical University Press, Częstochowa, 2003.
- 13. W. Desmet, Boundary Element Method in Acoustics, Notes from ISAAC 23 - course on applied and numerical acoustics, Leuven, 2012.
- 14. A. Alia, M. Souli, F. Erchiqui, Variational boundary element acoustic modeling over mixed quadrilateral-triangular element meshes, Commun. Numer. Meth. Engn. 22, 767-780, 2006.
- 15. W. Wang, N. Atalla, A numerical algorithm for double surface integrals over quadrilaterals with a 1/R singularity, Commun. Numer. Meth. Engn. 11, 885-890, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30aafdd7-9b21-4071-82ae-9f9b78070863