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1. Introduction 
 

Taking into account the importance of the safety and 
operating process effectiveness of real technical 
systems it seems reasonable to expand the two-state 
approach [8], [9] to multi-state approach [1]-[4], [6]-
[21] in safety analysis. The assumption that the 
systems are composed of multi-state components 
with safety states degrading in time [11]-[13] gives 
the possibility for more precise analysis of their 
safety and operational processes’ effectiveness. This 
assumption allows us to distinguish a system safety 
critical state to exceed which is either dangerous for 
the environment or does not assure the necessary 
level of its operation process effectiveness. Then, an 
important system safety characteristic is the time to 
the moment of exceeding the system safety critical 
state and its distribution, which is called the system 
risk function. This distribution is strictly related to 
the system multi-state safety function that are basic 
characteristics of the multi-state system. The safety 
models of the considered here typical multistate 
system structures can be applied in the safety 
analysis of real complex technical systems. They 
may be successfully applied, for instance, to safety 
analysis, identification, prediction and optimization 
of the maritime transportation systems. 
 

2. Safety analysis of multistate systems 
 

In the multistate safety analysis to define the system 
with degrading components, we assume that: 
– n is the number of the system components,  
– Ei, i = 1,2,...,n, are components of a system, 
– all components and a system under consideration 

have the safety state set {0,1,...,z}, ,1≥z  
– the safety states are ordered, the safety state 0 is 

the worst and the safety state z is the best,  
– Ti(u),  i = 1,2,...,n,  are independent random 

variables representing the lifetimes of 
components Ei in the safety state subset 
{ u,u+1,...,z}, while they were in the safety state z 
at the  moment t = 0,   

– T(u) is a random variable representing the lifetime 
of a system in the safety state subset  {u,u+1,...,z} 
while it was in the safety state z at the moment  
t = 0, 

– the system states degrades with time t, 
– si(t) is a component Ei safety state at the moment 

t, ),,0 ∞∈<t  given that it was in the safety state z 
at the moment t = 0,   

– s(t) is a system S safety state at the moment t, 
),,0 ∞∈<t  given that it was in the safety state z at 

the moment t = 0. 
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                                                   transitions 
 
 
 
 
 
 
worst safety state                                    best safety state 
 

Figure 1. Illustration of a system and components 
safety states changing 
 
The above assumptions mean that the safety states of 
the system with degrading components may be 
changed in time only from better to worse [11]-[13]. 
The way in which the components and the system 
safety states change is illustrated in Figure 1.  
 
Definition 1. A vector   
 
   Si(t ⋅, ) = [Si(t,0),Si(t,1),...,Si(t,z)], ),,0 ∞∈<t        (1)    
                       
   i = 1,2,...,n,  
 
where   
 
   Si(t,u) = P(si(t) ≥ u | si(0) = z) = P(Ti(u) > t),        (2) 
 
   ),,0 ∞∈<t  u = 0,1,...,z,                                             
 
is the probability that the component Ei is in the 
safety state subset },...,1,{ zuu +  at the moment t, 

),,0 ∞∈<t  while it was in the safety state z at the 
moment t = 0, is called the multi-state safety function 
of a component Ei.  
The safety functions  Ri(t,u), ),,0 ∞∈<t  u = 0,1,...,z, 
defined by (2) are called the coordinates of the 
component Ei, i = 1,2,...,n, multistate safety function 
Si(t ⋅, ) given by (1).  Thus, the relationship between 
the distribution function Fi(t,u) of the component Ei, 
i = 1,2,...,n,  lifetime Ti(u) in the safety state subset 

},...,1,{ zuu +  and the coordinate Si(t,u) of its 
multistate safety function is given by  
 
   Fi(t,u) = P(Ti(u) ≤  t) = 1 - P(Ti(u) > t) = 1 - Si(t,u),  
 
   ),,0 ∞∈<t  u = 0,1,...,z. 
 
Under Definition 1  and the agreements, we have the 
following property of the component multistate 
safety function coordinates  
 
   Si(t,0) ≥ Si(t,1) ≥ . . . ≥ Si(t,z), ),,0 ∞∈<t   
 
   i = 1,2,...,n. 

Further, if we denote by      
 
   pi(t,u) = P(si(t) = u | si(0) = z), ),,0 ∞∈<t  
 
   u = 0,1,...,z, 
 
the probability that the component Ei is in the safety 
state u at the moment t, while it was in the safety 
state z at the moment t = 0, then by (1)   
   Si(t,0) = 1, Si(t,z) = pi(t,z), ),,0 ∞∈<t                   (3) 

 
   i = 1,2,...,n, (3) 
 
and    
 
   ),1,(),(),( +−= utSutSutp iii  ,1,...,1,0 −= zu   (4) 

 
   ),,0 ∞∈<t  i =1,2,...,n.              
 
Moreover, if  
 
   1),( =utSi  for ,0≤t u = 1,2,...,z, i = 1,2,...,n, 
 
then  
 

   )(uiµ  = ∫
∞

0

,),( dtutSi  u = 1,2,...,z,   i=1,2,...,n,     (5) 

 
is the mean lifetime of the component Ei in the safety 
state subset },,...,1,{ zuu +   
 

   2)]([)()( uunu iii µσ −= , u = 1,2,...,z,              (6) 

 
   i = 1,2,...,n,                                                               
 
where  
 

   ∫=
∞

0

),(2)( dtuttSun ii , u = 1,2,...,z, i = 1,2,...,n,  (7)     

 
is the standard deviation of the component Ei lifetime 
in the safety state subset },...,1,{ zuu +  and     
 

   )(uiµ  = ∫
∞

0

,),( dtutpi u = 1,2,...,z, i = 1,2,...,n,     (8) 

 
is the mean lifetime of the component Ei in the safety 
state u, in the case when the integrals defined by (5), 
(7) and (8) are convergent.  
Next, according to (3), (4), (5) and (8), we have 
 
   ),1()()( +−= uuu iii µµµ  ,1,...,1,0 −= zu  

 

 
 

 

 
     

          u-1     0     1     u 
 

    z-1      z   … 
…  

  … 
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   ),()( zz ii µµ =  i = 1,2,...,n.                                  (9)                                       
 
Definition 2. A vector     
 
    S(t ⋅, ) = [S(t,0),S(t,1),...,S(t,z)], ),,0 ∞∈<t        (10) 
 
where   
 
   S(t,u) = P(S(t) ≥ u | S(0) = z) = P(T(u) > t),       (11) 
 
   ),,0 ∞∈<t  u = 0,1,...,z, 
 
is the probability that the system is in the safety state 
subset },...,1,{ zuu +  at the moment t, ),,0 ∞∈<t  
while it was in the safety state z at the moment ,0=t  
is called the multi-state safety function of this 
system.  
The safety functions S(t,u), ),,0 ∞∈<t  u = 0,1,...,z, 
defined by (11) are called the coordinates of the 
system multistate safety function S(t ⋅, ) given by 
(10). Consequently, the relationship between the 
distribution function F(t,u) of the system S lifetime 
T(u)  in the safety state subset },...,1,{ zuu +  and the 
coordinate S(t,u) of its multistate safety function is 
given by  
 
   F(t,u) = P(T(u) ≤  t) = 1 - P(T(u) > t) = 1 - S(t,u),  
 
   ),,0 ∞∈<t  u = 0,1,...,z. 
 
The exemplary graph of a four-state (z = 3) system 
safety function 
 
   S(t ⋅, ) = [1, S(t,1), S(t,2), S(t,3)], ),,0 ∞∈<t  
 
is shown in Figure 2. 
 

 
 

Figure 2. The graph of a four-state system safety 
function ),( ⋅tS  coordinates 
 
Under Definition 2, we have 
 

   S(t,0) ≥ S(t,1) ≥ . . . ≥ S(t,z), ),,0 ∞∈<t  
 
and if    
 
   p(t,u) = P(S(t) = u | S(0) = z), ),,0 ∞∈<t           (12) 

 
   u = 0,1,...,z,   
 
is the probability that the system is in the safety state 
u at the moment t, ),,0 ∞∈<t  while it was in the 
safety state z at the moment t = 0, then  
  
  S(t,0) = 1, S(t,z) = p(t,z), ),,0 ∞∈<t                  (13) 
 
and  
 
   p(t,u) = S(t,u) – S ),1,( +ut  ,1,...,1,0 −= zu       (14) 
 
   ).,0 ∞∈<t  
 
Moreover, if  
 
   S(t,u) = 1 for t ≤ 0, u = 1,2,...,z, 
 
then 
 

   )(uµ = ∫
∞

0

,),( dtutS  u = 1,2,...,z,                         (15) 

 
is the mean lifetime of the system in the safety state 
subset },,...,1,{ zuu +  
 

  2)]([)()( uunu µσ −= , u = 1,2,...,z,                 (16) 

 
where   
 

   ∫=
∞

0

2)( tun S(t,u)dt, u = 1,2,...,z,                     (17) 

 
is the standard deviation of the system lifetime in the 
safety state subset },...,1,{ zuu +  and moreover 
 

   ∫=
∞

0

,),()( dtutpuµ  u = 1,2,...,z,              (18) 

 
is the mean lifetime of the system in the safety state 
u while the integrals (15), (17) and (18) are 
convergent.  
Additionally, according to (13), (14), (15) and (18), 
we get the following relationship  
 
   ),1()()( +−= uuu µµµ  ,1,...,1,0 −= zu   

 

 

)1,(tS

 

)2,(tS

 

)3,(tS

 

)0,( =tS
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   ).()( zz µµ =                                                   (19) 
 
Definition 3. A probability  
 
   r(t) = P(S(t) < r | S(0) = z) = P(T(r) ≤ t), ),,0 ∞∈<t  
 
that the system is in the subset of safety states worse 
than the critical safety  state r, r ∈{1,...,z} while it 
was in the safety state z at the moment t = 0 is called 
a risk function of the multi-state system [9], [12].   
Under this definition, from (11), we have     
 
    r(t) = −1  P(S(t) ≥ r | S(0) = z) = −1  S(t,r),       (20) 
 
   ),,0 ∞∈<t                                                           
 
and if τ is the moment when the system risk exceeds 
a permitted level δ, then   
 
   =τ r ),(1 δ−                                                (21) 
 
where r )(1 t− , if it exists, is the inverse function of the 
system risk function r(t).  

The exemplary graph of a four-state system risk 
function for the critical safety state r = 2  
 
   r(t) = 1 - S(t,2), ),,0 ∞∈<t  
 
corresponding to the safety function illustrated in 
Figure 2 is shown in Figure 3. 
 
 

 
 

Figure 3. The graph of a four-state system risk 
function )(tr  
 
3. Safety structures of multistate systems 
 

Now, after introducing the notion of the multistate 
safety analysis, we may define basic multi-state 
safety structures. 
 
Definition 4. A multistate system is called series if its 
lifetime T(u) in the safety state subset },...,1,{ zuu +  
is given by  
 

   T(u) = )}({min
1

uTini ≤≤
, u = 1,2,...,z. 

 
The number n  is called the system structure shape 
parameter. 
The above definition means that a multi-state series 
system is in the safety state subset },...,1,{ zuu +  if 
and only if all its n  components are in this subset of 
safety states. That meaning is very close to the 
definition of a two-state series system considered in a 
classical reliability [8], [9], [12] analysis that is not 
failed if all its components are not failed. This fact 
can justify the safety structure scheme for a 
multistate series system presented in Figure 4.  
 

 
 

Figure 4. The scheme of a series system safety 
structure 
 
It is easy to work out that the safety function of the 
multi-state series system is given by the vector [9], 
[12] 
 
    ),( ⋅tS  = [1, )1,(tS ,..., ),( ztS ]                            (22) 
 
with the coordinates 
 

   ),( utS  = ∏
=

n

i
i utS

1
),( , ),,0 ∞∈<t  u = 1,2,...,z.   (23) 

 
Example 1. We consider an exemplary series system 
composed of components ,iE  ,4,3,2,1=i  with the 
safety structure presented in Figure 5.  
 

 
 

Figure 5. The scheme of the exemplary series system 
safety structure 
 
We arbitrarily distinguish four safety states of the 
system components 0, 1, 2, 3, i.e. .3=z  We fix that 
the critical safety state is 2=r  and we define the 
four-state conditional safety functions of the system 
components ,iE  ,4,3,2,1=i  in the form of the vector   
 
   ),( ⋅tSi = [1, )1,(tSi , )2,(tSi , )3,(tSi ],  ,4,3,2,1=i  
 
with the exponential coordinates 
   ],2exp[),( ututSi −=  ,3,2,1=u .4,3,2,1=i  
 
After direct application the formulae (22)-(23), we 
get the system safety function  
 

E1 E2 En 

   E1  E2    E3    E4 

          .    .    . 
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   ),( ⋅tS ),1,(,1[ tS= ),2,(tS )],3,(tS  t ≥ 0,            (24)              
 
where 

   ∑−=
=

4

1
])(exp[),(

i
i tuut λS ]24exp[ ut⋅−=  

 
             ],8exp[ ut−=  ,3,2,1=u   
 
and particularly 
 

   )1,(tS ],8exp[ t−=                                                 (25) 
 

   )2,(tS ],16exp[ t−=                                              (26) 
 

   )3,(tS ].24exp[ t−=                                              (27) 

 

 
 

Figure 6. The graph of the exemplary series system 
safety function ),( ⋅tS  coordinates 
 
The expected values and standard deviations of the 
system unconditional lifetimes in the safety state 
subsets }3,2,1{ , }3,2{ , }3{ , calculated from the results 
given by (25)-(27), according to (15)-(17), 
respectively are:  
 

   )1(µ ,125.0
8

1 ==  125.0)1( =σ ,                (28) 

 

  )2(µ ,0625.0
16

1 ==  ,0625.0)2( ≅σ               (29) 

 

   )3(µ ,0417.0
24

1 ≅=  .0417.0)3( ≅σ               (30) 

   
Consequently, considering (19) and (28)-(30), the 
mean values of  the system lifetimes in the particular 
safety states 1, 2, 3, respectively are:    
 
   ,0625.0)2()1()1( =−= µµµ     
 
   ,0208.0)3()2()2( ≅−= µµµ  

   .0417.0)3()3( ≅= µµ                                         (31) 

 
Since the critical safety state is r = 2, then the system 
risk function, according to (20), is given by  
 
   r(t) )2,(1 tS−= ]16exp[1 t−−=  for t ≥ 0.          (32) 
 
Hence, by (21), the moment when the system risk 
function exceeds a permitted level, for instance δ  = 
0.05, is  
 
   τ = r−1(δ) .04.0≅                                            (33) 
 

 
 

Figure 7. The graph of the exemplary series system 
risk function )(tr   
 
Definition 5. A multistate system is called parallel if 
its lifetime T(u) in the safety state subset  

},...,1,{ zuu +  is given by  
 
   T(u) = )}({max

1
uTi

ni ≤≤
, u = 1,2,...,z. 

 
The number n  is called the system structure shape 
parameter. 
The above definition means that the multistate 
parallel system is in the safety state subset 

},...,1,{ zuu +  if and only if at least one of its n  
components is in this subset of safety states. That 
meaning is very close to the definition of a two-state 
parallel system in a classical reliability analysis that 
is not failed if at least one of its components is not 
failed what can justify the safety structure scheme for 
a multistate parallel system presented in Figure 8.  
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Figure 8. The scheme of a parallel system safety 
structure 
 
The safety function of the multi-state parallel system 
is given by the vector [9], [12] 
 
   S(t ⋅, ) = [1,S(t,1),...,S(t,z)],                                 (34) 
 
with the coordinates   
 

   S(t,u) = −1  ∏
=

n

i
i utF

1
),( , ),,0 ∞∈<t  u = 1,2,...,z.(35) 

 
Example 2. We consider an exemplary parallel 
system composed of components ,iE  ,4,3,2,1=i  with 
the safety structure presented in Figure 9.  
 

 
 

Figure 9. The scheme of the exemplary parallel 
system safety structure 
 
We arbitrarily distinguish three safety states of the 
system components 0, 1, 2, i.e. ,2=z  and we fix that 
the critical safety state is .1=r  We define the three-
state safety functions of the system components ,iE  

,2,1=i  in the form of the vector   
 
   ),( ⋅tSi = [1, )1,(tSi , )]2,(tSi ],  ,4,3,2,1=i  
 
with the exponential coordinates 
 
   ],exp[),( ututSi −=  ,2,1=u .4,3,2,1=i  
 
After application of the formulae (34)-(35), we get 
the system safety function  

   ),( ⋅tS ),1,(,1[ tS= )],2,(tS  t ≥ 0,                        (36) 

 
where 
 

   S(t,u) = −1  ∏ −−
=

4

1
]]),(exp[1[

i
i tutλ  

 
             = 4]]exp[1[1 ut−−−   

 
             ]2exp[6]exp[4 utut −−−=  

 
             ],4exp[]3exp[4 utut −−−+  ,2,1=u   
 
and particularly 
 

)1,(tS ]2exp[6]exp[4 tt −−−=   

 
          ],4exp[]3exp[4 tt −−−+                              (37) 
 

   )2,(tS ]4exp[6]2exp[4 tt −−−=  

 
              ].8exp[]6exp[4 tt −−−+                          (38) 

 

 
 

Figure 10. The graph of the exemplary parallel 
system safety function ),( ⋅tS  coordinates 
 
The expected values and standard deviations of the 
system unconditional lifetimes in the safety state 
subsets },2,1{ }2{ , calculated from the results given 
by (37)-(38), according to (15)-(17), respectively are:  
 

   )1(µ
4

1
1

3

1
4

2

1
6

1

1
4 −+−= ≅ 2.083,                   (39)  

 
   194.1)1( ≅σ ,  

 

   )2(µ
8

1
1

6

1
4

4

1
6

2

1
4 −+−= ≅ 1.042,                 (40) 

 
   596.0)2( ≅σ , 

En 

E2 

E1 

. 

. 

. 

  E1 

  E2 

  E3 

  E4 
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and further, considering (19) and (39)-(40), the mean 
values of the lifetimes in the particular safety states 
1, 2,  respectively are:    
 
   ,041.1)2()1()1( ≅−= µµµ   
 
   041.1)2()2( ≅= µµ .                                          (41) 
 
Since the critical safety state is r =1, then the system 
risk function, according to (20), is given by  
 
   r(t) )1,(1 tS−=  

 
         ]2exp[6]exp[41 tt −+−−=   

 
         ],4exp[]3exp[4 tt −+−−  for t ≥ 0.               (42)                                                       
 
Hence, by (21), the moment when the system risk 
function exceeds a permitted level, for instance δ  = 
0.05, is  
 
    τ = r−1(δ) .84.1≅                                              (42) 
 

 
 

Figure 11. The graph of the exemplary parallel 
system risk function )(tr  
 
Definition 6. A multistate system is called an “m out 
of n” system if its lifetime T(u) in the safety state 
subset },...,1,{ zuu +  is given by    
 
   T(u) = ),()1( uT mn +−  m = 1,2,...,n, u = 1,2,...,z, 

 
where )()1( uT mn +−  is the m-th maximal order statistic 

in the sequence of the component lifetimes  
   1T (u), 2T (u),..., nT (u), u = 1,2,...,z. 
 
The above definition means that the multistate „m 
out of n” system is in the safety state subset 

},...,1,{ zuu +  if and only if at least m out of its n 
components are in this safety state subset and it is a 
multistate parallel system if m = 1 and it is a 
multistate series system if m = n. The numbers m and 

n are called the system structure shape parameters. 
The scheme of an “m out of n” multistate system 
safety structure, justified in an analogous way as in 
the case of a multistate series system and a multistate 
parallel system, is given in Figure 12, where 

,1i ,2i …, },...,2,1{ ni n ∈  and ba ii ≠  for .ba ≠  
 

 
 

Figure 12. The scheme of an “m out of n” system 
safety structure 
 
It can be simply shown that the safety function of the  
multistate “m out of n” system is given either by the 
vector [9], [12]  
 
   ),( ⋅tS  = [1, )1,(tS ,..., ),( ztS ],                           (43) 
 
with the coordinates   
 

   ∑−=
−≤+++

=

−1

1...21
0,...,2,1

1)],([)],([1),(
mnrrr

nrrr

ir
i

ir
i utFutSutS ,       (44) 

 
   ),,0 ∞∈<t   u = 1,2,...,z,    
 
or by the vector  
 
   ),( ⋅tS  = [1, )1,(tS ,..., ),( ztS ],                            (45) 
 
with the coordinates  
 

   ∑=
≤+++
=

−1

...21
0,...,2,1

1)],([)],([),(
mnrrr

nrrr

ir
i

ir
i utSutFutS ,             (46) 

 
   ),,0 ∞∈<t  ,mnm −=  u = 1,2,...,z.        
                               
Example 3. We consider an exemplary “m out of n” 
system composed of 5=n  identical components 

521 ,...,, EEE . We arbitrarily assume that ,3=z  i.e. 
the system and its components may be in the one of 
the safety states from the safety state set }.3,2,1,0{  

Moreover, we assume that the components ,iE  

. .
 . 

. .
 . 

1i
E

  

ni
E

  

mi
E

  

2i
E
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,5,...,2,1=i  in the safety state subsets have the 
exponential safety functions  given by the vector  
   
   S(t ⋅, ) = [1, S(t,1), S(t,2), S(t,3)],                         (47) 
 
   t ∈ <0,∞),     
        
with the coordinates  
 

   ],01.0exp[)1,( ttS −=   
 

   ],03.0exp[)2,( ttS −=  
 

   ],05.0exp[)3,( ttS −=  for .0≥t                          (48) 
 
The system is out of the safety state subset 

},3,...,1,{ +uu  ,3,2,1=u  if at least 2=m  of its 
components are out of this safety state subset. 
Supposing that the considered system critical safety 
state is 2=r , we conclude that the system is out of 
the safety state subset },3,2{  if at least 2 of its 
components from 5 components are out of the safety 
state subset }.3,2{  Thus, the considered system is the 
four-state “2 out of 5” system, and according to 
formulae (45)-(46), we get the following expression 
for the system safety function  
 

   
),( ⋅tS = [1, ),1,(tS ),2,(tS )3,(tS ],                   (49) 

 
where 
 
   =),( utS 32 )],([)],([10 utFutS  
 
               23 )],([)],([10 utFutS+ ),()],([5 4 utFutS+  
 
               5)],([ utS+  for ),,0 ∞∈<t  .3,2,1=u    (50)

 
                                  
In the particular case, when the component ,iE  

,5,...,2,1=i  in the safety state subsets have the 
exponential safety functions  given by (47)-(48), 
considering (49)-(50), we get the following formulae 
for the system safety function coordinates:   
 
   =)1,(tS 3]]01.0exp[1][02.0exp[10 tt −−−  
 
             2]]01.0exp[1][03.0exp[10 tt −−−+  
 
             ]]01.0exp[1][04.0exp[5 tt −−−+  
 
             ],05.0exp[ t−+                                          (51) 
 

   =)2,(tS 3]]03.0exp[1][06.0exp[10 tt −−−  
 
              2]]03.0exp[1][09.0exp[10 tt −−−+  
 
             ]]03.0exp[1][12.0exp[5 tt −−−+  
 
             ],15.0exp[ t−+                                          (52) 
 
   =)3,(tS 3]]05.0exp[1][10.0exp[10 tt −−−  
 
              2]]05.0exp[1][15.0exp[10 tt −−−+  
 
              ]]05.0exp[1][20.0exp[5 tt −−−+  
 
              ],25.0exp[ t−+  for ).,0 ∞∈<t                 (53)   

 

 
 

Figure 13. The graphs of the exemplary four-state “2 
out of 5” system safety function coordinates 
 
The expected values and standard deviations of the 
system lifetimes in the safety state subsets 

},3,2,1{ }3,2{ and }3{ , calculated from the results 
given by (51)-(53), according to (15)-(17), 
respectively are:  
 
   ,330.128)1( ≅µ ,095.68)1( ≅σ                           (54) 
 
   ,780.42)2( ≅µ ,692.22)2( ≅σ                           (55)  
 
   ,670.25)3( ≅µ ,611.13)3( ≅σ                           (56) 
 
and further, considering (19) and (54)-(56), the mean 
values of the system lifetimes in the particular safety 
states 1, 2, 3 respectively are:    
 
   ≅−= )2()1()1( µµµ 85.550,     
 
   ≅−= )3()2()2( µµµ 17.110, 
  
   ≅= )3()3( µµ 25.670,                                        (57) 
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Since the critical safety state is r = 2, then the system 
risk function, according to (20) and (52), is given by  
 
   r(t) = 1 – )2,(tS

 
 
         3]]03.0exp[1][06.0exp[101 tt −−−−=  
 
         2]]03.0exp[1][09.0exp[10 tt −−−−  
 
         ]]03.0exp[1][12.0exp[5 tt −−−−  
 
             ],15.0exp[ t−− for ).,0 ∞∈<t                   (58) 
                                                     

 
Hence, by (21), the moment when the system risk 
function exceeds a permitted level, for instance δ  = 
0.05, is  
 
   τ = r−1(δ) .63.38≅                                               (59) 
 

 
 

Figure. 14. The graph of the exemplary four-state “2 
out of 5” system risk function 

 
Definition 7. A multistate system is called a 
consecutive “m out of n: F” system if it is out of the 
safety state subset },...,1,{ zuu +  if and only if at 
least its m neighbouring components out of n its 
components arranged in a sequence of ,1E  ,2E  ..., 

,nE  are out of this safety state subset. The numbers 
m and n are called the system structure shape 
parameters. 
After denoting by 
 

   
),( utS ))0(|)(( zSutSP =≥= ),)(( tuTP >=   (60) 

 
   ),,0 ∞∈<t  u = 0,1,...,z,                                         
the probability that the consecutive “m out of n: F” 
system is in the safety state subset },...,1,{ zuu +  at 
the moment t, ),,0 ∞∈<t  while it was in the safety 
state z at the moment t = 0 and by 
 

   
),( utS ),)(( tuTP ≤=

 
),,0 ∞∈<t  u = 0,1,...,z,  (61) 

 

the distribution function of the lifetime )(uT  of this 
system in the safety state subset {u,u+1,...,z}, while it 
was in the safety state z at the moment t = 0, we 
conclude that the safety function of the consecutive 
“m out of n: F” system is the given by the vector  
 

   
),( ⋅tS = [1,

 
),1,(tS ),2,(tS  ...,

 
),( ztS ],           (62) 

 
with the coordinates given by the following recurrent 
formula [7], [14], [21] 
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for ,0≥t  u = 1,2,...,z.                                            (63) 

 
Example 4. We consider the safety of the steel cover 
composed of 24=n  arranged identical sheets 

2421 ,...,, EEE . We arbitrarily assume that ,4=z  i.e. 
the steel cover and the sheets it is composed of may 
be in the one of the safety states from the safety state 
set }.4,3,2,1,0{  Moreover, we assume that the sheets 

,iE  ,24,...,2,1=i  in the safety state subsets have the 
exponential safety functions  given by the vector  
   
    S(t , ⋅ ) = [1, S(t,1), S(t,2), S(t,3), S(t,4)],           (64) 
 
   t ∈ <0,∞),                                                           
 
with the coordinates  
  

   ],01.0exp[)1,( ttS −=  ],02.0exp[)2,( ttS −=   
 

   ],05.0exp[)3,( ttS −=  ]10.0exp[)4,( ttS −=       (65) 

 
   for .0≥t                                                             
  
The cover is out of the safety state subset 

},4,...,1,{ +uu  ,4,3,2,1=u  if at least 2=m  of its 
neighbouring sheets is out of this safety state subset. 
Supposing that the considered steel cover critical 
safety state is 2=r , we conclude that the steel cover 
is failed, i.e. it is out of the safety state subset 

},4,3,2{  if at least 2 of its neighbouring sheets from 
24 sheets are out of the safety state subset }.4,3,2{  
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Thus, the considered steel cover is the five-state 
consecutive “2 out of 24: F” system, and according 
to formulae (62)-(63), we get the following 
expression for the steel cover safety function 

, 
 

   
),( ⋅tS = [1, ),1,(tS ),2,(tS ),3,(tS )4,(tS ],       (66) 

 
where 
 

   
),( utS ),(24 utS=

 
 

               
),( utS= ),(23 utS

 
 

                
),(),( utFutS+ ),(22 utS

                        
(67) 

 
for ),,0 ∞∈<t  ,4,3,2,1=u                     
 
and  
 

 =),( utS  
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for ,0≥t  u = 1,2,...,z, .24,...,3,2=n  
 
In the particular case, when the sheets ,iE  

,24,...,2,1=i  in the safety state subsets have the 
exponential safety functions  given by (64)-(65), 
considering (67)-(68), we get the following recurrent 
formulae for the cover safety function coordinates:   
 
- )1,(24 tS  is determined by the formulae  
 

   
=)1,(2 tS 2]]01.0exp[1[1 t−−−  for ),,0 ∞∈<t  

 

   
)1,(tnS ]01.0exp[ t−= )1,(1 tn−S

 
 

              ]01.0exp[ t−+ ]]01.0exp[1[ t−− )1,(2 tn−S
 

 
for ),,0 ∞∈<t  ,24,...,4,3=n                                   (69) 
   
- )2,(24 tS  is determined by the formulae  
 

   
=)2,(2 tS 2]]02.0exp[1[1 t−−−  for ),,0 ∞∈<t  

    
)2,(tnS ]02.0exp[ t−= )2,(1 tn−S

 
 

                 ]02.0exp[ t−+ ]]02.0exp[1[ t−− )2,(2 tn−S
 

 
 for ),,0 ∞∈<t  ,24,...,4,3=n                                  (70) 
 
- )3,(24 tS  is determined by the formulae  
 

   
=)3,(2 tS 2]]05.0exp[1[1 t−−−  for ),,0 ∞∈<t  

 

   
)3,(tnS ]05.0exp[ t−= )3,(1 tn−S

 
 

             ]05.0exp[ t−+ ]]05.0exp[1[ t−− )3,(2 tn−S
 

 
   for ),,0 ∞∈<t  ,24,...,4,3=n                                 (71) 
 
- )4,(24 tS  is determined by the formulae  
 

   
=)4,(2 tS 2]]10.0exp[1[1 t−−−  for ),,0 ∞∈<t  

 

   
)4,(tnS ]10.0exp[ t−= )4,(1 tn−S

 
 

                ]10.0exp[ t−+ ]]10.0exp[1[ t−− )4,(2 tn−S
  

 
for ),,0 ∞∈<t .24,...,4,3=n                                  (72) 
                                                       

 
 

Figure 15. The graphs of the steel cover safety 
function coordinates 
 
The expected values and standard deviations of the 
system unconditional lifetimes in the safety state 
subsets },4,3,2,1{ },4,3,2{ }4,3{ and }4{ , calculated 
from the results given by (69)-(72), according to 
(15)-(17), and using the computer programme 
respectively are:  
 
   ,969.22)1( =µ ,086.14)1( ≅σ                            (73) 
 
   ,485.11)2( =µ ,043.7)2( ≅σ                             (74) 
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   ,594.4)3( =µ ,817.2)3( ≅σ                               (75) 
 
   ,297.2)4( =µ ,409.1)4( ≅σ                               (76) 
 
and further, considering (19) and (73)-(76), the mean 
values of the unconditional lifetimes in the particular 
safety states 1, 2, 3, 4 respectively are:    
 
   ≅−= )2()1()1( µµµ 11.484,    
 
   ≅−= )3()2()2( µµµ 6.891, 
 
   ≅−= )4()3()3( µµµ 2.297,  
 
   ≅= )4()4( µµ 2.297.                                         (77) 
 
Since the critical safety state is r = 2, then the system 
risk function, according to (20) and (70), is given by  
 
   r(t) = 1 – )2,(24 tS ]02.0exp[1 t−−= )2,(23 tS

 
 

         ]02.0exp[ t−− ]]02.0exp[1[ t−− )2,(22 tCs
     

(78) 
 
for ).,0 ∞∈<t                                                      

 
 
Hence, by (21), the moment when the system risk 
function exceeds a permitted level, for instance δ  = 
0.05, is  
 
    τ = r−1(δ) .5.2≅                                                  (79) 
 

 
 

Figure 16.  The graph of the steel cover risk function 
 
Other basic multistate safety structures with  
components degrading in time series-parallel, 
parallel-series, series-“m out of k”, “ mi out of l i”-
series, series-consecutive “m out of k: F” and 
consecutive “mi out of l i: F”-series systems.  
To define them, we assume that:    
– k is the number of the system subsystems,  
– l i, i = 1,2,...,k, are the numbers of the subsystem 

components, 

– Eij, i = 1,2,...,k, j = 1,2,...,l i, k, l1, l2,..., kl  ∈ N, are 
components of a system, 

– all components Eij have the same safety state set 
as before {0,1,...,z}, 

– Tij(u), i = 1,2,...,k, j = 1,2,...,l i, k, l1, l2,..., kl  ∈ N, 
are independent random variables representing 
the lifetimes of components Eij in the safety state 
subset },,...,1,{ zuu +  while  they  were  in the 
safety state z at the moment t = 0,  

– Eij(t) is a component Eij safety state at the moment 
t, ),,0 ∞∈<t  while they were in the safety state z 
at the moment t = 0, 

and proceed in n analogous way as before in defining  
  
4. Conclusion 
 

The proposed in this paper models for safety 
evaluation and prediction of the considered systems 
are the basis for the considerations in of the book 
[18]. These system safety  models, together with the 
models of the system operation process presented in 
will be used in [18] 3 for constructing the integrated 
joint general safety models of complex technical 
systems related to their operation processes. The 
models applied here, in their particular cases, for the 
safety analysis and prediction of the exemplary 
technical systems operating in constant operation 
conditions will also be applied in [18] to safety 
analysis and prediction of these systems operating at 
the variable operation conditions.   
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