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Abstract

Basic notions of the ageing multistate systemstgafealysis are introduced. The system componerddize
system multistate safety functions are defined. Tean values and variances of the multistate sgstem
lifetimes in the safety state subsets and the mvedures of their lifetimes in the particular safatates are
defined. The multi-state system risk function and moment of exceeding by the system the critiabdtg
state are introduced. The exemplary safety strestof the multistate systems with ageing componarés
defined and their safety functions are determieda particular case, the safety functions of thesaered
multistate systems composed of components havipgreential safety functions are determined. Appilorest

of the proposed multistate system safety modetedcevaluation and prediction of the safty charsties of

the exemplary series, paralleim‘out of n”, consecutive f out ofn: F”, series-parallel, parallel-series and “
out of|"-series systems are presented as well.

1. Introduction 2. Safety analysis of multistate systems

Taking into account the importance of the safety an In the multistate safety analysis to define thaesys
operating process effectiveness of real technicalvith degrading components, we assume that:
systems it seems reasonable to expand the two-state nis the number of the system components,
approach [8], [9] to multi-state approach [1]-[]- — E,i1=1,2,..n, are components of a system,

[21] in safety analysis. The assumption that the— all components and a system under consideration
systems are composed of multi-state components have the safety state set {0,1z},.,z>1,

with safety states degrading in time [11]-[13] give — the safety states are ordered, the safety state O i
the possibility for more precise analysis of their  the worst and the safety statis the best,

safety and operational processes’ effectiveness. Th— T), i = 1,2,.n, are independent random
assumption allows us to distinguish a system safety variables representing the lifetimes of
critical state to exceed which is either dangerfous components E; in the safety state subset
the environment or does not assure the necessary {u,u+1,...7, while they were in the safety state
level of its operation process effectiveness. Tlaen, at the moment= 0,

important system safety characteristic is the ttme — T(u) is a random variable representing the lifetime
the moment of exceeding the system safety critical of a system in the safety state subseiu{1,...z}
state and its distribution, which is called theteys while it was in the safety stateat the moment
risk function. This distribution is strictly relateto t=0,

the system multi-state safety function that arécbas — the system states degrades with ttme
characteristics of the multi-state system. Thetgafe — g(t) is a componerk,; safety state at the moment
models of the considered here typical multistate t, tO< 0, ), given that it was in the safety state
system structures can be applied in the safety .tihe moment= 0,

analysis of real complex technical systems. They_ S(t) is a systenS safety state at the moment

may be successfully applied, for instance, to gafet < 0,0, given that it was in the safety statat
analysis, identification, prediction and optimizati the moment = 0

of the maritime transportation systems.
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transitions Further, if we denote by

o

O -@0-@Q

r S u=0,1,...z

p(t,u) =P(s(t) =u|s(0) =2), t O< 0, ),

worst safety state best safety state the probability that the componetis in the safety

stateu at the moment, while it was in the safety
Figure 1. lllustration of a system and components statez at the momentt= 0, then by (1)

safety states changing S(t,0) = 1,S(t,2) = pi(t,2), t0< 0, ), (3)
The above assumptions mean that the safety stiates o i=1,2,.0, (3)

the system with degrading components may be B

changed in time only from better to worse [11]-[13] and

The way in which the components and the system
safety states change is illustratedrigure 1. pLU)=S GU-S Gu+D, u=0L..z-1 (4)
Definition 1.A vector

t0<0,), i =1,2,...n.

S(t.) = [S(1,0).S(t.1),...5(t2)], tU<0,0), (1)

Moreover, if
i=1,2,..n,
Stu=1lfort<Ou=1.2,.27zi=12,..n,
where
then
S(t,u) =P(s(t) =2 u|s(0) =2) = P(Ti(u) > 1), (2
t0<0,0), u=0,1,...2 H(u) = !)S, (t,udt, u=1,2,.z i=1,2,..n, (5)

is the probability that the componegf is in the is the mean lifetime of the compondatn the safety
safety state subsdiu,u+1,...,zZ2 at the moment, state subsdiu,u +1,...,7},

t0< 0,0), while it was in the safety stateat the

momentt = O, is called the multi-state safety function g, (u)=4/n (u) —[x (U)]* ,u=1.2,.2 (6)

of a componenk;.

The safety functionsR(t,u), t0< 0,), u=10,1,...7,

defined by (2) are called the coordinates of the

component, i = 1,2,..n, multistate safety function \yhere

S(t,l) given by (1). Thus, the relationship between

the distribution functior(t,u) of the componenk;,

i =1,2,..n, lifetime T;(u) in the safety state subset

{u,u+1,...,zZz and the coordinateS(t,u) of its

multistate safety function is given by is the standard deviation of the comporigrifetime
in the safety state sub<et,u+1,...,z2 and

i=1,2,...n,
n (U) = 2JtS (t,udt, u=1,2,..2,i = 1,2,..0, (7)
0

R(t,u) = P(Ti(u) < t) = 1 -P(Ti(u) >t) = 1 -S(t,u),

t0<0,e), U=0,1,..7 AWM =[pEudtu=12.2i=12.0 ()

following property of the component multistate siatey, in the case when the integrals defined by (5),
safety function coordinates (7) and (8) are convergent.

Next, according to (3), (4), (5) and (8), we have
S(t,0)= S(t,1)> .. .= S(t,2), t O< 0,),

. Hi(u) = (U) =4 (u+D), u=0L...,z-1,
i=12,..n
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(2= (2), i=12,.0 @)  St0)zS(t1)=...=S(t2), t0<0,0),
Definition 2 A vector and if

S(t)) = [S(,0)8(,1),...8t,2)], tO<0,w),  (10)  pitu) = P(St) =u|S0) =2), t 0< 0, ), (12)
where u=0,1,.7,

S(t,u) =P(St) 2u|S0) =2) = P(T(u) >1), (11)  is the probability that the system is in the safdtte
u at the moment, t<0,), while it was in the

t0<0,0), u=0,1,..z safety state at the moment= 0, then
is the probability that the systeisiin the safety state  S(t,0) = 1,5(t,2) = p(t,2), t 0< 0, »), (13)
subset{u,u+1,...,7Z2 at the moment, t[<O0,»),
while it was in the safety stareat the moment =0, and
is called the multi-state safety function of this
system. p(t,u) = S(t,u) —S(t,u+1, u=04L...,z-1, (14)

The safety function§(t,u), t0< 0,0), u=0,1,...7,
defined by (11) are called the coordinates of the t<O0, ).
system multistate safety functio(t,.) given by

(10). Consequently, the relationship between theMoreover, if
distribution functionF(t,u) of the systens lifetime
T(u) in the safety state subset,u+1,...,zZ and the S(t,u) =1fort<0,u=1,2,..7

coordinateS(t,u) of its multistate safety function is
given by then

F(t,U) = P(T(U) < t) =1 -P(T(U) >t) =1 -S(t,U), ,U(U): TS(t,U)dt, u= 1’2,.”2’ (15)

t0<0Q,o), u=0,1,..2
is the mean lifetime of the system in the safetyest

The exemplary graph of a four-stae= 3) system subsefu,u+1,...,7,

safety function
S(t4) = [1, St.1), S.2), SG3), 10< 0,0), o) =IN [, 0= 122 (o

: _ where
is shown inFigure 2
1 n(u) = 2/t S(tuydt, u=1,2,..2, (17)
S0 = 0
0E
\ s(t1) Is the standard deviation of the system lifetiméhia
e \33\ safety state subséti, u+1,...,z and moreover
= ] ﬁk
St3 ey o o
s (2 H(u) = [ pt,uydt, u=12,.2, (18)
0
i 0 zﬁn 450 SDID atln 1300 . . .
t is the mean lifetime of the system in the safefyest

u while the integrals (15), (17) and (18) are

Figure 2.The graph of a four-state system safety ~ convergent. _
function S(t,[) coordinates Additionally, according to (13), (14), (15) and J18
we get the following relationship

UnderDefinition 2 we have (W) = 4(U) - p(u+1), u=01...z-1
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1(2) = u(2). 9L T = min{T,(u)},u=12,.2

Definition 3 A probability The numbern is called the system structure shape

parameter.
The above definition means that a multi-state serie
system is in the safety state subgetu+1,...,7 if

and only if all itsn components are in this subset of
safety states. That meaning is very close to the
definition of a two-state series system considénex
classical reliability [8], [9], [12] analysis th& not
failed if all its components are not failed. Thacf
can justify the safety structure scheme for a
multistate series system presente#igure 4

rt) = P(S(t) <r | X0) =2) = P(T(r) < 1), t < 0,00),

that the system is in the subset of safety statesev
than the critical safety stater [0{1,...,Z while it
was in the safety stateat the moment = 0 is called
a risk function of the multi-state system [9], [12]
Under this definition, from (11), we have

() = 1- P(SO) =1 | S0) =2) = 1- S(t,r),

t 0< 0, ),

(20)

— & E _..._En_

and if 7 is the moment when the system risk exceedsrigure 4.The scheme of a series system safety
a permitted leved, then structure

r=r7"(9), (21) It is easy to work out that the safety functiontlod

multi-state series system is given by the vectdy [9
wherer *(t), if it exists, is the inverse function of the [12]

system risk function(t). _
The exemplary graph of a four-state system risk Sth =[L.SED,....St.2)]

function for the critical safety state= 2

(22)

with the coordinates
r) =1-5t2), t0<0,),
St,u) =S tu),t0<0w), u=12,.z (23)
corresponding to the safety function illustrated in =

Figure 2is shown irFigure 3. Example 1 We consider an exemplary series system

composed of components , i= 1234, with the

0 20C 407

t 600

£Co ‘oco

Figure 3.The graph of a four-state system risk

functionr (t)

3. Safety structures of multistate systems

Now, after introducing the notion of the multistate

safety structure presentedrigure 5

] E1 | E2 | E3 B B,

Figure 5.The scheme of the exemplary series system

safety structure

We arbitrarily distinguish four safety states ot th
system components 0, 1, 2, 3, iz= 3. We fix that
the critical safety state is =2 and we define the
four-state conditional safety functions of the eyst

componentsg , i = 1234, in the form of the vector

SEDP=[1,SD.S¢.2.S 3] i=1234

safety analysis, we may define basic multi-statewith the exponential coordinates

safety structures.

S (t,u) =exp[-2ut], u=123 i= 1234

Definition 4.A multistate system is called series if its aAfter direct application the formulae (22)-(23), we

lifetime T(u) in the safety state subst,u+1,...,2

is given by

get the system safety function
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S@t,) =[1 St), St.2, St.3)], t=0, (24) a3 =u@) L0.0417 (31)
where Since the critical safety stateris 2, then the system
S(t,u) = exp[-3 A (u)t] =exp[4[2ut] risk function, according to (20), is given by
rit) =1-S(,2) =1-expf1a] fort= 0. (32)

=exp[8ut], u=123
Hence, by (21), the moment when the system risk

and particularly function exceeds a permitted level, for instadce
0.05, is
St =exp[8&t], 125
r=rY(9L 004 (33)
S(t,2) = exp[-1a], (26)
r((’]1
S(t,3) = exp[24]. 27 |~ p

038

07

0,6

05
04
03
02

01

0

T T T T 1
0 0,1 0,2 Q63 04 t 05

Figure 7.The graph of the exemplary series system
risk functionr (t )

0 ot o2 o o4 t 0 Definition 5. A multistate system is called parallel if
its lifetime T(u) in the safety state subset
{u,u+1,...,Z is given by

Figure 6.The graph of the exemplary series system
safety functionS(t,[) coordinates

The expected values and standard deviations of the 1Y) = MaXT;(u},u=12,..2

system unconditional lifetimes in the safety state

subsets(123}, {23}, {3}, calculated from the results The numbern is called the system structure shape
given by (25)-(27), according to (15)-(17), parameter.

respectively are: The above definition means that the multistate
parallel system is in the safety state subset
{u,u+1,...,z if and only if at least one of it®

components is in this subset of safety states. That
meaning is very close to the definition of a twatet
1 parallel system in a classical reliability analygiat
H1(2)=—=0.0625 o(2) L 0.0625 (29) is not failed if at least one of its componentid

16 failed what can justify the safety structure schéone
a multistate parallel system presenteéigure 8.

4 @) =% =0.125 o(1)=0.125, (28)

1) = i 000417 o(3) C 00417 (30)

Consequently, considering (19) and (28)-(30), the
mean values of the system lifetimes in the pdgicu
safety states 1, 2, 3, respectively are:

H@ =pu®-u2)=00625

H(2) = pu(2) - u(3) L 0.0208
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E, St =[L S, St.2) t=0, (36)

where

N R O

S(tu) = 1- [][L-exp[-A, (t u)t]

4-[1-expFut]]*

L E, |

= 4expl[ut] —6exp[-2ut]
Figure 8.The scheme of a parallel system safety
structure +4exp[-3ut] —exp[4ut], u=12,

The safety function of the multi-state parallelteys
is given by the vector [9], [12]

S(t.t) =[1,5(t,1),...3(t,2)], (34)

and particularly
S(t)]) =4exp[t] —6exp2t]

with the coordinates +4exp[-3t] —exp[-4t ], (37)

n :4 —2t _ _4
St = 1~ [F (tu), t0<0,0), u=1.2,..2(35) S(.2) =4exp-2] - 6expr4]

+ 4exp[-6t] — exp[-8t ]. (38)
Example 2.We consider an exemplary parallel
system composed of componeis i =1,2,34, with

1
S(t,u)

the safety structure presentedigure 9. 09
0,8
— — 0,7
El 0,6
] T 0,5
| E2 | 0,4
0,3
|| E3 || 0,2
0,1
0 T T T T i
L | E4 | 0 1 2 3 4 t 5

Figure 10.The graph of the exemplary parallel

Figure 9.The scheme of the exemplary parallel system safety functiors(t, ) coordinates

system safety structure

The expected values and standard deviations of the
system unconditional lifetimes in the safety state
subsets {12},{2}, calculated from the results give

by (37)-(38), according to (15)-(17), respectivale:

We arbitrarily distinguish three safety states tué t
system components 0, 1, 2, iz= 2, and we fix that

the critical safety state is= lWe define the three-
state safety functions of the system componé&its
i =12, in the form of the vector

1) = 4%—6%+4%—1% r2.083, (39)
SEY=[1,StD.St2)]] i=1234
, _ _ o(@) 1194,
with the exponential coordinates
S, (t,u) = exp[-ut], u=12,i = 1234 g4t _gligl 41
 (t, u) = exp[-ut], : 34. U(@2)=4=-6=+4=-1= [ 1.042, (40)
2 4 6 8
After application of the formulae (34)-(35), we get
PP (34)35) g o0(2) L 0.596,

the system safety function
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and further, considering (19) and (39)-(40), theame n are called the system structure shape parameters.
values of the lifetimes in the particular safetsgtes ~ The scheme of annf out of n” multistate system

1, 2, respectively are: safety structure, justified in an analogous waynas
the case of a multistate series system and a nhaigtis
A =u@ - u(2) C104] parallel system, is given irFigure 12 where
iy, by, eoni, 0{12,...,0} andi, #i, for aZb.
H(2)=pu(2) L1041 (41)
Ei
Since the critical safety stateris=1, then the system !
risk function, according to (20), is given by
Ei
rt) =1-S¢ 2
=1-4exp[t] + 6exp[2t] E
| 'm |
| - |
- 4exp[-3t] + exp[-4t ], fort = 0. (42) i : i
L I -
Hence, by (21), the moment when the system risk i

function exceeds a permitted level, for instadce  Figyre 12.The scheme of amtout ofn” system

0.05,is safety structure

r=r(J C184 (42) It can be simply shown that the safety functiorhef

multistate ‘m out of n” system is given either by the

RO vector [9], [12]

S(t,) =[1,S¢tY,....S(t,2)], (43)

06 r(t)

with the coordinates

] stu=1- X[SEUI'[FEUI™,  (44)

11,r2,...fn=0
01 4 r+rp+.+rpsm-1

t0<Q,0), u=12,.z2
Figure 11.The graph of the exemplary parallel

system risk functiorr (t ) or by the vector
Definition 6. A multistate system is called am‘ut S(t,) =[1,S¢),....S(t, 2)], (45)
of n” system if its lifetimeT(u) in the safety state
subset{u,u +1,...,Z is given by with the coordinates
T(U) = -r(n—m+l)(u)’ m= 1,2,..-n1 u= 1,2,---2, S(t,u) - Zl:[FI (t,u)] f [S| (t,u)]l_ri , (46)
1.,r2,.../n=0

r+rp+.trpsm

where T _ ., (u) is themth maximal order statistic
in the sequence of the component lifetimes t0<0,0), M=n-m u=12,.2
T. (), T, (U),...T,(W,u=1.2,.z

Example 3We consider an exemplaryn“out ofn”
The above definition means that the multistate , system composed oh= Sdentical components
out of n” system is in the safety state subset E,.E,.....E,. We arbitrarily assume thaz=3 i.e.
{uu+l...7 if and only if at leasm out of itSN  he system and its components may be in the one of
components are in this safety state subset asdat i the safety states from the safety state {€et 1,23}

multistate parallel system ifn = 1 and it is a
. ) . Moreover, we assume that the componeiis ,
multistate series systemrni= n. The numbers and P
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i=12,..5 in the safety state subsets have the S(t,2)=10exp[-006t][1-exp[-003]]*
exponential safety functions given by the vector

+10exp[-00%][1 - exp[-003]]*

qt.) = [1,§t.1), §t,2), St.3)], (47)
{0 <080), + 5exp[-012t][1- exp[-003]]
with the coordinates + exp-014], (52)
S(t,)) = exp[-001], S(t,3) = 10exp[-010][1 - exp[-005]]®
S(t,2) = exp[-003], +10exp[- 0.15][1 - exp[-005t]] >
S(t,3) =exp[-005], for t=0. (48) + 5exp[-020t][1 - exp[- 005]]
The system is out of the safety state subset + exp[-025t], for tO< 0, ). (53)

{u,u+1...3}, u=123 if at least m= 2 of its
components are out of this safety state subset| .
Supposing that the considered system critical pafet | ;s
state isr =2, we conclude that the system is out of | s
the safety state subs¢pR3}, if at least 2 of its 07 |
components from 5 components are out of the safety ° |
state subsef2,3}. Thus, the considered system is the | >
four-state “2 out of 5" system, and according to | "
formulae (45)-(46), we get the following expression
for the system safety function

0,3 -

0,2

0,1

0

S(t,[): [_’]_,S(t’l), S(t,Z)' S(t’3) ]’ (49) 0 . 100 150 200 ¢ 250

Figure 13.The graphs of the exemplary four-state “2

where out of 5” system safety function coordinates
S(t,u) = 10 S(t, u)l*[F ¢, u)l’ The expected values and standard deviations of the
system lifetimes in the safety state subsets
+ 10 S(t, u)]’[F (t,u)]* +5[S(t, u)]* F(t,u) {1,23}, {23}and {3}, calculated from the results

given by (51)-(53), according to (15)-(17),
+[S(t,u)]® for t0<0,0), u=123. (50) respectively are:

In the particular case, when the compondft , #(1) £128330, 0 (1) L 68095 (54)

i=12,..5 in the safety state subsets have the

exponential safety functions given by (47)-(48), H(2) £ 42780, 0(2) [ 22692 (55)

considering (49)-(50), we get the following formella

for the system safety function coordinates: #(3) £ 25670, 0(3) L1361] (56)
S(t 1) = 10exp[-002t][1 - exp[- 001]]? and further, considering (19) and (54)-(56), theame

values of the system lifetimes in the particuldesa

+10exp[-003][1— exp[-001] 2 states 1, 2, 3 respectively are:

HQ@ = p@) - u(2) £ 85.550,
+ 5exp[-004t][1- exp[-001]]

H(@2) = u@2)-u@) L17.110,
+ exp[-00%], (51)

1(3) = u(3) C 25.670, (57)

116



Journal of Polish Safety and Reliability Associatio
Summer Safety and Reliability Seminafslume 4, Number 1, 2013

Since the critical safety stateris 2, then the system the distribution function of the lifetim@ (u) of this
risk function, according to (20) and (52), is giMBn  system in the safety state subseti§1,...7, while it
was in the safety state at the moment = 0, we
r(t) =1-S(,2 conclude that the safety function of the conseeutiv
“mout ofn: F” system is the given by the vector
=1-10exp[-006t][1 - exp[-003]]*
Si,0=1[1, S¢.,), St,2), ..., S(t,2)], (62)

—10exp[-00%][1 - exp[-003]]*
with the coordinates given by the following recutre

— 5expl-012t][1- exp[-003]] formula [7], [14], [21]
—exp[-015], for t0< 0, ). (58) 1 forn<m
Hence, by (21), the moment when the system risk 1—ﬁ F. (t,u) forn=m,
function exceeds a permitted level, for instadce =
0.05, is S(tu)=S, () =S, t.U)S,. )
m-1
+>S,,(tusS, ., (tu
r=r"(J [ 3863. (59) 25 (LWS,L W
O ﬁ F, (t,u) forn>m,
s j=n-i+l
ols )
0:7 fort=0, u=1,2,..z (63)
os Example 4We consider the safety of the steel cover
o4 composed of n= 24 arranged identical sheets
> E,,E,,...,.E,,. We arbitrarily assume that=14, i.e.
o the steel cover and the sheets it is composed gf ma
0 ‘ ‘ ‘ ‘ ‘ be in the one of the safety states from the safizilye

set {01234}. Moreover, we assume that the sheet
Figure. 14 The graph of the exemplary four-state “2 E,, i=12,...24, in the safety state subsets have the
out of 5" system risk function exponential safety functions given by the vector

Definition 7. A multistate system is called a St, 1) = [1, St,1), St,2), t,3), St,4)] (64)
consecutive th out of n: F” system if it is out of the ’ P e e

safety state subsdtu,u+1,...,z} if and only if at
least itsm neighbouring components out af its
components arranged in a sequenceEpf E,, ...,  with the coordinates

E,, are out of this safety state subset. The numbers

m and n are called the system structure shape S(t1)=exp[-001], S(.2)=exp[-002],
parameters.

After denoting by S(t,3) =exp[-00%t], S(t.4) =exp[-0.10] (65)

t 0 <0),

S(t,u) =P(S(t)=2u|S(0) =2) =P(T(u) >t), (60) fort>0.

t0<0,,), u=0,1,.z2 The cover is out of the safety state subset
the probability that the consecutiven‘out of n: F” {uu+1,..4}, u=1234 if at least m= 2 of its
system is in the safety state subggui+1..,2 at  neighbouring sheets is out of this safety statesetib
the momentt, tO<0,), while it was in the safety Supposing that the considered steel cover critical
statez at the moment = 0 and by safety state is =2, we conclude that the steel cover
is failed, i.e. it is out of the safety state subse
S(t,u) = P(T(u)<t), t0<0,®), u=0,1,..7 (61) {234}, if atleast 2 of its neighbouring sheets from
24 sheets are out of the safety state subasy}.
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Thus, the considered steel cover is the five-state S, (t,2) =expF002] S, (t,2)
consecutive “2 out of 24: F” system, and according
to formulae (62)-(63), we get the following
expression for the steel cover safety function

+exp[-002] [1-exp[-002]] S, (t.2)

for t0<0,), n=34,..24 (70)
St,)=[1,St.D, St,2, St.3, St.4)],  (66)

- S, (t,3) is determined by the formulae
where

S(u) = S, (tu) S, (t,3) = 1-[1—-exp[-005]]? for t < 0,),

- S(tu) S, () S, (t,3) =exp[-00&] S, t,3)

+S{LU)F (t,U) S, u) (67) +exp-00%] [1-exp005]] S, _, (t,3)

for tO< O, oo), u= 1234, for t O< 0,0), n=34,...24 (71)

and - S,, (t,4) is determined by the formulae

S, (t,4) = 1-[1-exp[-01Q]]* for t0< 0, ),

1 forn< 2,
1- IEI Fi (t,U) forn= 2, Sn (t,4) = exp[—OlOt] Sn—l (t,4)
1=1
S(t,u) = S, (t,u) =1 S(t,u) S, (t,u) (68) +exp[-010t] [1-expF01Q]] S, (t,4)
1
+> S(t,u)S, ., (t,
2 SUS, U for t < 0,00), N= 34,...24 (72)
O ﬁ F,(t,u) forn>2 —
j=n-i+l The unconditional safety function of the system
fort=0, u=1,2,..2,n=23,..24 o
In the particular case, when the sheeEs , ﬁjj
i=12,..24, in the safety state subsets have the -
exponential safety functions given by (64)-(65),

considering (67)-(68), we get the following recutre Moi b e e s e eE s e ow 0o
formulae for the cover safety function coordinates:

— inthe safety state subset{1,.. 4} —in the safety state subset{2. 4} — inthe safety state subset{3,4}
inthe safety state subset{4}

- S,, .1 is determined by the formulae Figure 15.The graphs of the steel cover safety
function coordinates

S, (t,1) = 1-[1-exp[001]])? for t O< 0, ),
The expected values and standard deviations of the
ol system unconditional lifetimes in the safety state
S, 1) =expro01] S, (t.1) subsets {1234}, {234}, {34}and{4}, calculated
from the results given by (69)-(72), according to
(15)-(17), and using the computer programme

respectively are:
for t0<0,), n=34,..24 (69)

+exp[001] [1-expF001]] S, , .1

u@) =22.969, o) C14.086 (73)
- S,, (t,2) is determined by the formulae
1(2) =11.485 0(2) [ 7.043 (74)
S, (t,2) = 1-[1-exp[-002]]? for t U< 0, ),
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u(3) = 4594, 0(3) C 2.817, (75)

U(4) =2.297 0(4) L1409 (76)
and further, considering (19) and (73)-(76), theame
values of the unconditional lifetimes in the parts
safety states 1, 2, 3, 4 respectively are:

HAO=u@-u(2) C11.484,

H(2) = p(2)-u3) L6.891,

HE) =u@) - u@4) L2.297,

a4 =pu(4) C2.297. (77)

Since the critical safety stateris 2, then the system
risk function, according to (20) and (70), is giu®n

rt) =1-S,,(t,2) =1-expF002] S, (t,2)
—-exp[002] [1-expF002]] Cs,, t,2) (78)

for t 0< 0, ).

Hence, by (21), the moment when the system ris

function exceeds a permitted level, for instadce

0.05, is

r=r(J C 25. of7

[

Risk function of the system

00
00 25 50 75 100 125 150 175 200 225 250 275 300 325 B/O IS 40 85 40
fime

|7systam risk function — permitted level 0.05 momentwhen the risk exceeds a permitted |evel 2 4?2‘

Figure 16 The graph of the steel cover risk function

[5]

Other basic multistate safety structures with

components degrading in time series-parallel

parallel-series, seriesd' out of k”, “m out of I;"-

series, series-consecutivan“out of kk F” and

consecutive m out ofl;: F’-series systems.

To define them, we assume that:

— kis the number of the system subsystems,

— I, i =1,2,..k are the numbers of the subsystem
components,

K

[4]

[6]

[7]

[8]

Eija i = 1,2,...l,(,j = 1,2,...|,i, k, |1, |2,...,|k O N, are
components of a system,

all componentsE; have the same safety state set
as before {0,1,.2},

Ti(u),i =1,2,.kj =120 K Iy, I,...,1, ON,

are independent random variables representing
the lifetimes of components; in the safety state
subset{u,u+1...,z, while they were in the
safety state at the momentt= 0,

E;(t) is a componert; safety state at the moment
t, t0<0,0), while they were in the safety state
at the moment = 0,

and proceed in n analogous way as before in definin

4. Conclusion

The proposed in this paper models for safety
evaluation and prediction of the considered systems
are the basis for the considerations in of the book
[18]. These system safety models, together wigh th
models of the system operation process presented in
will be used in [18] 3 for constructing the intega
joint general safety models of complex technical
systems related to their operation processes. The
models applied here, in their particular casestter
safety analysis and prediction of the exemplary
technical systems operating in constant operation
conditions will also be applied in [18] to safety
analysis and prediction of these systems operating
the variable operation conditions.
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