PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacturing of ZrO2-Ni graded composites via centrifugal casting in the magnetic field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the possibility of fabricating ceramic-metal composites by an innovative method of centrifugal slip casting in the magnetic field. It was examined whether the use of this method would allow obtaining a gradient concentration of metal particles in the ceramic matrix. In the applied technique, the horizontal rotation axis was used. The study investigated the effect of solid phase content on the properties and microstructure of the products. Water-based suspensions with 35, 40, 45 and 50 vol.% of solid-phase content were prepared with 10 vol.% additional of nickel powder. The viscosity of prepared slurries was considered. The gradient distribution of nickel particles in the zirconia matrix was observed on SEM. Vickers hardness of ZrO2-Ni composites has been measured. The research revealed that the physical properties depend on the volume fraction of solid content and increase as the volume of solid content increases.
Rocznik
Strony
539--545
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Military University of Technology, Faculty of Mechanical Engineering, 2 Gen. S. Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Military University of Technology, Faculty of Mechanical Engineering, 2 Gen. S. Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141 St., 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141 St., 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141 St., 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141 St., 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141 St., 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141 St., 02-507 Warsaw, Poland
Bibliografia
  • [1] S. Suresh and A. Mortensen, Fundamentals of Functionally Graded Materials, Cambridge University Press, Cambridge, 1998.
  • [2] Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, and R.G. Ford, Functionally graded materials, design, processing and applications, Kluwer Academic Publishers, Boston, 1999.
  • [3] A. Kawasaki and R. Watanabe, “Concept and P/M fabrication of functionally gradient materials”, Ceram. Int. 23, 73‒83 (1997). https://doi.org/73-83.10.1016/0272-8842(95)00143-3.
  • [4] S. Suresh and A. Mortensen, Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behaviour of Graded Metals and Metal-ceramic Composites, IOM Communications, London, 1998.
  • [5] K. Hodor, P. Zięba, and B. Olszowska-Sobieraj, “Materiały gradientowe jako nowe możliwości współczesnej techniki”, Inż. Mater. 6, 595‒600 (1999) [in Polish].
  • [6] M.B. Bever and P.E. Duwez, “Gradients in composite materials”, Mater. Sci. Eng. 10, 1‒8 (1972). https://doi.org/10.1016/0025-5416(72)90059‒6.
  • [7] A. Neubrand and J. Neubrand, “Gradient materials: an overview of a novel concept”, Zeitschrift für Metallkunde 88, 358‒371 (1997).
  • [8] M. Koizumi, “The Concept of FGM”, Ceramic Transactions, Functionally Gradient Materials 34, 3‒10 (1993).
  • [9] M. Koizumi, “FGM activities in Japan”, Compos. Part B-Eng. 28, 1‒4 (1997). https://doi.org/10.1016/S1359‒8368(96)00016‒9.
  • [10] M. Wachowski, W. Kaszuwara, A. Miazga, K. Konopka, and J. Zygmuntowicz, “The possibility of producing graded Al2O3 - Mo, Al2O3 -Cu, Al2O3-W composites using CSC method” Bull. Pol. Ac.: Tech. 67, 179‒184 (2019). https://doi.org/10.24425/bpas.2019.128603.
  • [11] M. Rozmus, „Cermetalowe materiały gradientowe”, Materiały Ceramiczne 4, 142‒147 (2006) [in Polish].
  • [12] B. Ilschner, “Structural and compositional gradients: basic idea, preparation, applications”, Journal de Physique IV Colloque 3, 763‒772 (1993). https://doi.org/1051/jp4:19937121.
  • [13] J. Zygmuntowicz, A. Miazga, P. Wiecieńska, W. Kaszuwara, K. Konopka, and M. Szafran, “Combined centrifugal-slip casting method used for preparation the Al2O3-Ni functionally graded composites”, Compos. Part B-Eng. 141, 158‒163 (2018). https://doi.org/10.1016/j.compositesb.2017.12.056
  • [14] J. Palka and G. Matula, Funkcjonalne materiały gradientowe jako sposób łączenia niekomplementarnych własności mechanicznych, PSKN, 2007
  • [15] K.K. Chawla, Composite materials science and engineering, New York: Springer Science Business Media, 2012.
  • [16] R. Barretta, L. Feo, and R. Luciano, “Torsion of functionally graded nonlocal viscoelastic circular nanobeams”, Compos. Part B-Eng. 72, 217‒222 (2015). https://doi.org/10.1016/j.compositesb.2014.12.018.
  • [17] R. Barretta, L. Feo, R. Luciano, F. Marotti de Sciarra, and R. Penna, “Functionally graded Timoshenko nanobeams: a novel non-local gradient formulation”, Compos. Part B-Eng, 100, 208‒219 (2016). https://doi.org/10.1016/j.compositesb.2016.05.052.
  • [18] X.J. Xu, and J.M. Meng, “A model for functionally graded materials”, Compos. Part B-Eng. 145, 70–80 (2018). https://doi.org/10.1016/j.compositesb.2018.03.014.
  • [19] L. Dobrzański and G. Matula, „Podstawy metalurgii proszków i materiały spiekane”, Gradientowe materiały narzędziowe, Open Access Library, 14, 56‒74 (2012) [in Polish].
  • [20] L. Dobrzański, A. Kloc-Ptaszna, G. Matula, and J. Torralba, „Wpływ stężenia węgla na strukturę i własności gradientowych materiałów narzędziowych”, Archiwum Odlewnictwa, Katowice, PAN-Katowice, 2006 [in Polish].
  • [21] W.H. Tuan and R.J. Brook, “Processing of Alumina/Nickel Composites”, J. Eur. Ceram. Soc. 10, 95‒100 (1992). https://doi.org/10.1016/0955‒2219(92)90123-U.
  • [22] M. Wośko, B. Paszkiewicz, T. Piasecki, A. Szyszka, R. Paszkiewicz, and M. Tłaczała, “Applications of functionally graded materials in optoelectronic devices”, Optica Applicata 35, 663‒667 (2005).
  • [23] T. Ogawa, Y. Watanabe, H. Sato, I.S. Kim, and Y. Fukui, “Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method”, Compos. Part A-Appl. S. 37, 2194‒2200 (2006). https://doi.org/10.1016/j.compositesa.2005.10.002.
  • [24] S.S. Tjong and Z. Ma, “Microstructural and mechanical characteristics of in situ metal matrix composite”, Mater. Sci. Eng. 29, 49–114 (2000). https://doi.org/10.1016/S0927‒796X(00)00024‒3.
  • [25] M. Szafran, K. Konopka, E. Bobryk, and K.J. Kurzydłowski, “Ceramic matrix composites with gradient concentration of metal particles”, J. Eur. Ceram. Soc. 27, 651‒654 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.046.
  • [26] A. Mortensen and S. Suresh, “Functionally graded metals and metal-ceramic composites: Part I”, Processing. Inter. Mater. Rev. 40, 239‒265 (1995). https://doi.org/10.1179/imr.1997.42.3.85.
  • [27] P. Grant, I. Palmer, and I. Stone, “Spray formed aerospace alloys are high flyers”, Mater. World 7, 331‒333 (1999).
  • [28] S. Nai, M. Gupta, and C. Lim, “Synthesis and wear characterization of Al based, free standing functionally graded materials: effect of different matrix compositions”, Compos. Sci. Technol. 63, 1895–1909 (2003). https://doi.org/10.1016/S0266‒3538(03)00158‒1.
  • [29] J. Vleugels, G. Anné, S. Put, and O. van der Biest, “Thick plate-shaped Al2O3/ZrO2 composites with continuous gradient processed by electrophoretic deposition”, Mater. Sci. Forum 423, 171–176 (2003). https://doi.org/10.4028/www.scientific.net/MSF.423‒425.171.
  • [30] J. Lackner, W. Waldhauser, R. Ebner, B. Major, and T. Schöberl, “Structural, mechanical and tribological investigations of pulsed laser deposited titanium nitride coatings”, Thin Solid Films 453‒454, 195‒202 (2004). https://doi.org/10.1016/j.tsf.2003.11.106.
  • [31] J. Zygmuntowicz, M. Wachowski, A. Miazga, K. Konopka, and W. Kaszuwara, “Characterization of Al2O3/Ni composites manufactured via CSC technique in magnetic field”, Compos. Part B-Eng. 156, 113‒120 (2019). https://doi.org/10.1016/j.compositesb.2018.08.079
  • [32] O. Odawara, “Centrifugal Casting, Concise Encyclopedia of Self-Propagating High-Temperature Synthesis”, History, Theory, Technology, and Products 58‒60 (2017) https://doi.org/10.1016/B978-0-12-804173-4.00025-9
  • [33] J. Zygmuntowicz, A. Miazga, K. Konopka, and W. Kaszuwara, “Metal particles size influence on graded structure in composite Al2O3-Ni”, Mater. Techn. 50, 537‒541 (2016). https://doi.org/10.17222/mit.2015.120.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30aa040d-8418-457a-8c8e-668d776a9ddf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.