PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water Lettuce (Pistia stratiotes L.) as a Potential Material for Biogas Production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study evaluated the biogas production potential of water lettuce (Pistia stratiotes L.) by batch anaerobic digestion under in-vitro conditions. Twenty-one litre-plastic jars were used to conduct 4 replications over 75 days. The results showed that solution temperature, pH and Eh were suitable for biogas production. More than 50% of the obtained CH4 was formed within 17–42 days after incubation. The maximum daily CH4 production was 0.052 L/gVS, whilst the daily H2S concentration was low, with a maximum value of 28 ppm within 14–21 d after incubation. Moreover, the peak of daily biogas production was seen at day 16 with production of 0.12 L/gVS. The results highlight that water lettuce biomass can be potentially used to produce high quality biogas in anaerobic incubation.
Słowa kluczowe
Rocznik
Strony
182--188
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • College of Environment and Natural Resources, Can Tho University, Campus II, 3/2 Street, Can Tho City 92000, Vietnam
  • College of Environment and Natural Resources, Can Tho University, Campus II, 3/2 Street, Can Tho City 92000, Vietnam
  • Kien Giang University, 320A, 61 Street, Minh Luong Town, Chau Thanh, Kien Giang province, Vietnam
  • College of Environment and Natural Resources, Can Tho University, Campus II, 3/2 Street, Can Tho City 92000, Vietnam
Bibliografia
  • 1. Cong N.V., Kim D.T., Yen N.T.H., Nguyen P.Q., Hoang N.X., Chiem N.H., Kieu L.D. 2021. To produce compost from water lettuce (Pistia stratiotes L.) for planting water spinach (Ipomoea aquatic). Vietnam journal of agriculture and rural development, 421, 42–50.
  • 2. Fonkou T., Agendia P., Kengne I., Akoa A., Nya J. 2002. Potentials of water lettuce (Pistia stratiotes) in domestic sewage treatment with macrophytic lagoon systems in Cameroon., In: Proc. of International Symposium on Environmental Pollution Control and Waste Management, Tunis, 709–714.
  • 3. Gerardi M.H. 2003. The microbiology of anaerobic digesters. Wiley, Hoboken.
  • 4. Herout M., Malaťák J., Kučera L., Dlabaja T. 2011. Biogas composition depending on the type of plant biomass used. Res. Agr. Eng., 57(4), 137–143.
  • 5. Hong N.T., Lieu P.K. 2012. Treatment efficiencies of household-scale biogas systems on piggery wastewater in Thua Thien Hue province. Journal of science, Hue university, 73(4), 83–91.
  • 6. Linh L.N., Hoang N.X., Thuan N.C., Chiem N.H., Cong N.V., 2021. Removal ammonium in water by water lettuce. Journal Natural Resources and Environment, 1(Nov), 28–30. (in Vietnamese)
  • 7. McCarty P.L. 1964. Anaerobic waste treatment fundamentals. Public Works, 95(9), 107–112.
  • 8. Ministry of Natural Resources and Environment (MORE), 2016. National Technical Regulation on the effluent of livestock, 1–8.
  • 9. Nam T.S., Kha L.T.M., Khanh H.C., Thao H.V., Ngan N.V.C., Chiem N.H., Viet L.H., Ingvorsen K. 2017. The possibility of producing biogas from rice straw and water hyacinth at different VS’s concentration in batch anaerobic experiment. Can Tho University Journal of Science. Topics: Environment and Climate Change, 1, 93–99.
  • 10. Nam T.S., Thao H.V., Khanh H.C., Luan N.T., Ngan N.V.C., Diem H.T., Danh D.T., Cong N.V. 2022. Labscale biogas production from co-digestion of superintensive shrimp sludge and potential biomass feedstocks. Journal of Energy Systems, 6(1), 131–142.
  • 11. Ngan N.V.C., Chan F.M.S., Nam T.S., Thao H.V., Maguyon-Detras M.C., Hung D.V., Cuong D.M., Hung N.V. 2020. Chapter 5: Anaerobic Digestion of Rice Straw for Biogas Production. In: Sustainable Rice Straw Management. Gummert M., Hung N.V., Chivenge P., Douthwaite B. (Eds). Springer, 65–92.
  • 12. Ngan N.V.C., Klaus F. 2012. Energy recovery from anaerobic codigestion with pig manure and spent mushroom compost in the Mekong Delta. J. Viet. Env., 3(1), 4–9.
  • 13. Ramaraj R., Unpaprom Y. 2016. Effect of temperature on the performance of biogas production from Duckweed. Chemistry Research Journal, 1(1), 58–66.
  • 14. Solh M.E. 2010. The Economics and Policy of Biogas Production: A Vietnamese Case Study. Master thesis. Wageningen University.
  • 15. Trang N.T.D., Xuan V.T.D., Nhien N.T.C., Nhi N.T.T., Thuc N.T., Viet V.H. 2020. The ability to treat biogas wastewater of water lettuce (Pistia stratiotes) in combination with Snakeskin gourami farming (Trichogaster pectoralis). Can Tho University Journal of Science, 391, 27–36.
  • 16. Verma V.K., Singh Y.P., Rai J.P.N. 2006. Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresource Technology, 98, 1664–1669.
  • 17. Viet L.H., Y L.T.N., Nhi V.T.D., Ngan N.V.C. 2017. Study on treatment of biogas effluent by high-rate Spirulina sp. algae culture pond. Can Tho University Journal of Science, 49(A), 1–10. DOI: 10.22144/jvn.2017.001
  • 18. Vindis P., Mursec B., Rozman C., Janzekovic M., Cus F. 2009. Mini digester and biogas production from plant biomass. Journal of Achievements in Materials and Manufacturing Engineering, 35(2), 191–196.
  • 19. Yadvika S., Sreehrishnan T.R., Kohli S., Rana V. 2004. Enhancement of biogas production from solid substrates using different techniques – a review. Bioresour Technol, 95, 1–10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30a5b33e-5b88-4e7e-afcb-ed9938a1bb28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.