Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We report a novel mushroom-typed modified near-ballistic uni-traveling-carrier photodetector (modified NBUTC-PD) based on a drift-diffusion model which achieves high responsivity at the sub-THz regime. By well-designed active and depleted regions to form a “mushroom” type, with the optimal cliff and charge layers to make electrons transport at a “near-ballistic” speed, of order 107 cm/s, as well as the rational hybrid-doping absorber, the modified NBUTC-PD successfully achieves the decoupling between the bandwidth and responsivity characteristics. For the modified NBUTC-PD with an active area of 12.56 μm2, the simulation shows that the 3-dB bandwidth is up to 107 GHz, with a responsivity up to 0.38 A/W, at a reverse bias voltage of 1 V. The decrease in 3-dB bandwidth of the modified NBUTC-PD is analysed in detail under high-light injection conditions, which results from the energy band shift and electric field collapse.
Czasopismo
Rocznik
Tom
Strony
33--48
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
autor
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252000, China
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252000, China
autor
- Department of Electrical Engineering, Poly-Grames Research Center, Polytechnique Montréal, Montréal H3T 1J4, Canada
autor
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252000, China
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Bibliografia
- [1] GNAUCK A.H., TKACH R.W., CHRAPLYVY A.R., LI T., High-capacity optical transmission systems, Journal of Lightwave Technology 26(9), 2008: 1032-1045. https://doi.org/10.1109/JLT.2008.922140
- [2] XU J., SUN S.J., HU Q.G., YU J.K., LIU J.S., LUO Q., WANG W.Z., HUANG L.Y., XIANG M., WU J.J., ZHENG F.S., LI W.H., DENG L, ZHOU H.Y., ZHANG L.,JIA S.G., ZHANG X.H., CHEN H.T., Unrepeatered transmission over 670.64 km of 50G BPSK, 653.35 km of 100G PS-QPSK, 601.93 km of 200G 8QAM, and 502.13 km of 400G 64QAM, Journal of Lightwave Technology 38(2), 2020: 522-530. https://doi.org/10.1109/JLT.2019.2939842
- [3] ZHANG J.W., YU J.J., CHIEN H.C., Linear and nonlinear compensation for 8-QAM SC-400G long-haul transmission systems, Journal of Lightwave Technology 36(2), 2018: 495-500. https://doi.org/10.1109/JLT.2017.2758326
- [4] WEI J.L., EISELT N., GRIESSER H., GROBE K., EISELT M.H., VEGAS OLMOS J.J., TAFUR MONROY I., ELBERS J.P., Demonstration of the first real-time end-to-end 40-Gb/s PAM-4 for next-generation access applications using 10-Gb/s transmitter, Journal of Lightwave Technology 34(7), 2016: 1628 -1635. https://doi.org/10.1109/JLT.2016.2518748
- [5] BELING A., CAMPBELL J.C., High-speed photodiodes, IEEE Journal of Selected Topics in Quantum Electronics 20(6), 2014: 57-63. https://doi.org/10.1109/JSTQE.2014.2341573
- [6] GAO S., NIU H.J., LI Z., FAN X.Y., DUAN X.F., HUANG Y.Q., Near-infrared integrated single-wavelength waveguide photodetector under zero bias, Journal of Liaocheng University (Natural Science Editions) 36(5), 2023: 49-55 (in Chinese).
- [7] ISHIBASHI T., KODAMA S., SHIMIZU N., FURUTA T., High-speed response of uni-traveling-carrier photodiodes, Japanese Journal of Applied Physics 36(10R), 1997: 6263. https://doi.org/10.1143/JJAP.36.6263
- [8] ITO H., FURUTA T., KODAMA S., ISHIBASHI T., InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth, Electronics Letters 36(21), 2000: 1809-1810. https://doi.org/10.1049/ el:20001274
- [9] WU Y.S., SHI J.W., CHIU P.H., Analytical modeling of a high-performance near-ballistic uni-traveling- carrier photodiode at a 1.55 μm wavelength, IEEE Photonics Technology Letters 18(8), 2006: 938-940. https://doi.org/10.1109/LPT.2006.873567
- [10] WU Y.S., SHI J.W., Dynamic analysis of high-power and high-speed near-ballistic unitraveling carrier photodiodes at W-band, IEEE Photonics Technology Letters 20(13), 2008: 1160-1162. https://doi.org/10.1109/LPT.2008.925195
- [11] LI Z., PAN H.P., CHEN H., BELING A., CAMPBELL J.C., High-saturation-current modified uni-traveling- carrier photodiode with cliff layer, IEEE Journal of Quantum Electronics 46(5), 2010: 626-632. https://doi.org/10.1109/JQE.2010.2046140
- [12] XIONG B., CHAO E.F., LUO Y., SUN C.Z., HAN Y.J., WANG J., HAO Z.B., WANG L., LI H.T., Research on ultra-wideband and high saturation power uni-traveling-carrier photodetectors, Infrared and Laser Engineering 50(7), 2021: 20211052. https://doi.org/10.3788/IRLA20211052
- [13] DU J.W., WANG X.J., HUANG Y.Q., WANG S.Y., YANG M.X., DUAN X.F., LIU K., YANG Y.S., REN X.M., Cascade uni-traveling-carrier photodetector array for terahertz applications, IEEE Journal of Quantum Electronics 59(1), 2023: 4400107. https://doi.org/10.1109/JQE.2022.3233091
- [14] HUANG Y.C., CHEN N.W., WU Y.K., NASEEM., SHI J.W., Improvements in the maximum THz output power and responsivity in near-ballistic uni-traveling-carrier photodiodes with an undercut collector, Journal of Lightwave Technology 42(7), 2024: 2362-2370. https://doi.org/10.1109/JLT.2023.3340502
- [15] DUAN X.F., WANG J.C., HUANG Y.Q., LIU K., SHANG Y.F., ZHOU G.R., REN X.M., Mushroom-mesa photodetectors using subwavelength gratings as focusing reflectors, IEEE Photonics Technology Letters 28(20), 2016: 2273-2276. https://doi.org/10.1109/LPT.2016.2591955
- [16] KANG C., HUANG Y.Q., LIU F., FEI J.R., CHEN Q.T., LIU K., DUAN X.F., WANG Q., WANG J., ZHANG X., REN X.M., A mushroom dual-absorption partially depleted absorber photodetector, [In] Asia Communications and Photonics Conference 2015, C. Lu, J. Luo, Y. Ji, K. Kitayama, H. Tam, K. Xu, P. Ghiggino, N. Wada, [Eds.], OSA Technical Digest (online), Optica Publishing Group, 2015: ASu2A.1. https://doi.org/10.1364/ACPC.2015.ASu2A.1
- [17] WANG J.C., DUAN X.F., HUANG Y.Q., LIU K., FEI J.R., CHEN Q.T., REN X.M., Novel 1.55 μm mushroom- type vertical-illumination photodiode, [In] Asia Communications and Photonics Conference 2016, OSA Technical Digest (online), Optica Publishing Group, 2016: AF2A.68. https://doi.org/10.1364/ACPC.2016.AF2A.68
- [18] KATO K., KOZEN A., MURAMOTO Y., ITAYA Y., NAGATSUMA T., YAITA M., 110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-μm wavelength, IEEE Photonics Technology Letters 6(6), 1994: 719-721. https://doi.org/10.1109/68.300173
- [19] ZHANG K.R., HUANG Y.Q., DUAN X.F., Design and analysis of hybrid integrated high-speed mushroom vertical PIN photodetector, Applied Mechanics and Materials 411-414, 2013: 1455-1458. https://doi.org/10.4028/www.scientific.net/AMM.411-414.1455
- [20] EI-BATAWY Y.M., DEEN M.J., Analysis, circuit modeling, and optimization of mushroom waveguide photodetector (mushroom-WGPD), Journal of Lightwave Technology 23(1), 2005: 423-431. https://doi.org/10.1109/JLT.2004.834483
- [21] EI-BATAWY Y.M., DEEN M.J., Modeling of mushroom waveguide photodetector, Journal of Vacuum Science and Technology A 22(3), 2004: 811-815. https://doi.org/10.1116/1.1730328
- [22] LIU T., HUANG Y.Q., WEI Q., LIU K., DUAN X.F., REN X.M., Optimized uni-traveling carrier photodiode and mushroom-mesa structure for high-power and sub-terahertz bandwidth under zero- and low-bias operation, Journal of Physics Communications 3(9), 2019: 095004. https://doi.org/10.1088/2399-6528/ab3b70
- [23] WANG H.Z., NIU H.J., JIANG C.X., FAN X.Y., FANG W.J., ZHANG X., A novel dual-absorption photodetector with high bandwidth-efficiency-product, [In] 2021 Asia Communications and Photonics Conference (ACP), Shanghai, China, 2021.
- [24] LI Q.L., LI K.J., FU Y., XIE X.J., YANG Z.Y., BELING A., CAMPBELL J.C., High-power flip-chip bonded photodiode with 110 GHz bandwidth, Journal of Lightwave Technology 34(9), 2016: 2139-2144. https://doi.org/10.1109/JLT.2016.2520826
- [25] CHEN Q.T., HUANG Y.Q., DUAN X.F., LIU F., KANG C., WANG Q., High-speed uni-traveling-carrier photodetector with the new design of absorber and collector, [In] 2015 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 2015. https://doi.org/10.1109/OECC.2015. 7340268
- [26] DENG J., BURASA P., WU K., Self-contained dual-input interferometric receiver for paralleled-multichannel wireless systems, IEEE Transactions on Circuits and Systems I: Regular Papers 71(2), 2024: 934-947. https://doi.org/10.1109/TCSI.2023.3338214
- [27] DENG J., BURASA P., WU K., Joint multiband linear interferometric receiver for integrated microwave and terahertz sensing and communication systems, IEEE Transactions on Microwave Theory and Techniques 72(9), 2024: 5550-5562. https://doi.org/10.1109/TMTT.2024.3363173
- [28] SEEDS A.J., SHAMS H., FICE M.J., RENAUD C.C., Terahertz photonics for wireless communications, Journal of Lightwave Technology 33(3), 2015: 579-587. https://doi.org/10.1109/JLT.2014.2355137
- [29] SENGUPTA K., NAGATSUMA T., MITTLEMAN D.M., Terahertz integrated electronic and hybrid electronic –photonic systems, Nature Electronics 1, 2018: 622-635. https://doi.org/10.1038/s41928-018-0173-2
- [30] DENG J., BURASA P., WU K., All-in-one dual-polarization waveguide receiver for multichannel wireless systems, IEEE Transactions on Microwave Theory and Techniques 72(8), 2024: 4998-5013. https://doi.org/10.1109/TMTT.2024.3355306
- [31] GUO L.Q., HUANG Y.Q., DUAN X.F., REN X.M., WANG Q., ZHANG X., High-speed modified uni-traveling- carrier photodiode with a new absorber design, Chinese Optics Letters 10(s1), 2012: S12301 -312304 (in Chinese).
- [32] GASPARYAN F.V., AROUTIOUNIAN V.M., ABRAHAMIAN YU.A., VAHANIAN A.I., Thermoelectric coefficient of the non-homogeneously doped p–n junctions made on Si and Pb0.8 Sn0.2Te, Sensors and Actuators A: Physical 113(3), 2004: 370-375. https://doi.org/10.1016/j.sna.2004.03.047
- [33] CHTIOUI M., LELARGE F., ENARD A., POMMEREAU F., CARPENTIER D., MARCEAUX A., VAN DIJK F., ACHOUCHE M., High responsivity and high power UTC and MUTC GaInAs-InP photodiodes, IEEE Photonics Technology Letters 24(4), 2012: 318-320. https://doi.org/10.1109/LPT.2011.2177965
- [34] LI X.W., LI N., DEMIGUEL S., ZHENG X.G., CAMPBELL J.C., TAN H.H., JAGADISH C., A partially depleted absorber photodiode with graded doping injection regions, IEEE Photonics Technology Letters 16(10), 2004: 2326-2328. https://doi.org/10.1109/LPT.2004.834563
- [35] JIANG C.X., NIU H.J., WANG H.Z., FAN X.Y., FANG W.J., ZHANG X., BAI C.L., A low-bias operational mMPDA photodetector with high bandwidth-efficiency product and high saturation characteristics, Journal of Modern Optics 69(11), 2022: 628-634. https://doi.org/10.1080/09500340.2022.2071495
- [36] CHEN Q.T., ZHANG X.P., SHARAWI M.S., KASHYAP R., Advances in high–speed, high–power photodiodes: From fundamentals to applications, Applied Sciences 14(8), 2024: 3410. https://doi.org/10.3390/app14083410
- [37] KATO K., Ultrawide-band/high-frequency photodetectors, IEEE Transactions on Microwave Theory and Techniques 47(7), 1999: 1265-1281. https://doi.org/10.1109/22.775466
- [38] NIU H.J., HUANG Y.Q., YANG Y.S., LIU K., DUAN X.F., WU G., LIU T., WEI Q., REN X.M., High bandwidth- efficiency product MPIN photodiode with parallel-connected microstructure, IEEE Journal of Quantum Electronics 56(5), 2000: 4400305. https://doi.org/10.1109/JQE.2020.3004130
- [39] CHEN D., YU X.C., WANG P.H., LIU Y., Study of the Influence of cliff layer on uni-traveling-carrier photodetector, Chinese Journal of Lasers 41(3), 2014: 266-271 (in Chinese).
- [40] LI N., LI X.W., DEMIGUEL S., ZHENG X.G., CAMPBELL J.C., TULCHINSKY D.A., WILLIAMS K.J., ISSHIKI T.D., KINSEY G.S., SUDHARSANSAN R., High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode, IEEE Photonics Technology Letters 16(3), 2004: 864-866. https://doi.org/10.1109/LPT.2004.823773
- [41] ITO H., KODAMA S., MURAMOTO Y., FURUTA T., NAGATSUMA T., ISHIBASHI T., High-speed and high-output InP–InGaAs unitraveling-carrier photodiodes, IEEE Journal of Selected Topics in Quantum Electronics 10(4), 2004: 709-727. https://doi.org/10.1109/JSTQE.2004.833883
- [42] ZHEN Z., HAO R., XING D., FENG Z.H., JIN S.Z., Nearly-ballistic optimization design of high-speed uni-traveling-carrier photodiodes, Chinese Journal of Lasers 47(10), 2020: 1006003 (in Chinese).
- [43] SMITH P.M., INOUE M., FREY J., Electron velocity in Si and GaAs at very high electric fields, Applied Physics Letters 37(9), 1980: 797-798. https://doi.org/10.1063/1.92078
- [44] ISHIBASHI T., Nonequilibrium electron transport in HBTs, IEEE Transactions on Electron Devices 48(11), 2001: 2595-2605. https://doi.org/10.1109/16.960386
- [45] CHEN Q.T., HUANG Y.Q., ZHANG X.P., DUAN X.F., FEI J.R., MA X.K., LIU T., WU G., LIU K., REN X.M., Uni-traveling-carrier photodetector with high-reflectivity DBR mirrors, IEEE Photonics Technology Letters 29(14), 2017: 1203-1206. https://doi.org/10.1109/LPT.2017.2712627
- [46] LIU F, HUANG Y.Q., KANG C., CHEN Q.T., DUAN X.F., REN X.M., High speed and high responsivity dual-absorption InGaAs/InP UTC-PDs, [In] 2015 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 2015. https://doi.org/10.1109/OECC.2015.7340304
- [47] GAO Y., CANSIZOGLU H., POLAT K.G., GHANDIPARSI S., KAYA A., MAMTAZ H.H., MAYET A.S., WANG Y., ZHANG X., YAMADA T., DEVINE E.P., ELREFAIE A.F., WANG S.Y., ISLAM M.S., Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes, Nature Photonics 11, 2017: 301-308. https://doi.org/10.1038/nphoton.2017.37
- [48] NIU H.J., HUANG Y.Q., YANG Y.S., LIU K., DUAN X.F., CAI S.W., WEI Q., WU G., XIAO C.Z., ZHI H.Y., REN X.M., Design of the microstructure parallel-connected PIN photodetector with high bandwidth -efficiency product, [In] 2020 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2020.
- [49] CHEN Q.T., FANG W.J., HUANG Y.Q., DUAN X.F., LIU K., SHARAWI M.S., REN X.M., Uni-traveling -carrier photodetector with high-contrast grating focusing-reflection mirrors, Applied Physics Express 13(1), 2020: 016503. https://doi.org/10.7567/1882-0786/ab5b4a
- [50] WANG H.Z., NIU H.J., JIANG C.X., FANG W.J., FAN X.Y., ZHANG X., BAI C.L., Symmetric photodetector integrated with multilayer dielectric resonator cavity for 400Gb/s optical communication system, Results in Optics 9, 2022: 100324. https://doi.org/10.1016/j.rio.2022.100324
- [51] CHEN Q.T., FANG W.J., HUANG Y.Q., DUAN X.F., LIU K., SHARAWI M.S., REN X.M., High focusing-reflection subwavelength gratings with uni-traveling-carrier photodetector for high responsivity, [In] 2019 Asia Communications and Photonics Conference (ACP), Chengdu, China, 2019.
- [52] ZHANG S.Y., NIU H.J., JIANG C.X., LIU T., CHEN Q.T., BAI C.L., Responsivity enhancement using Fabry-Pérot cavity for zero-bias waveguide photodiodes, [In] 2024 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 2024. https://doi.org/10.1109/ACP/IPOC63121.2024.10809851
- [53] NIU H.J., ZHANG S.Y., JIANG C.X., LIU T., CHEN Q.T., WEI J., GAO S., HUANG Y.Q., DUAN X.F., BAI C.L., High-responsivity, high-power waveguide photodetector with Fabry-Pérot cavity and quasi-dipole doping for sub-THz applications, Optics Communications 577, 2025: 131412. https:// doi.org/10.1016/j.optcom.2024.131412
- [54] NIU H.J., HUANG Y.Q., YANG Y.S., XIAO C.Z., YUAN W.F., ZHI H.Y., DUAN X.F., LIU K., REN X.M., Influence of the incident optical field distribution on a high-speed PIN photodetector and horizontal optimization, Applied Optics 60(3), 2021: 727-734. https://doi.org/10.1364/AO.411439
- [55] LIU T, HUANG Y.Q., FEI J.R., CHEN Q.T., MA X.K., DUAN X.F., LIU K., REN X.M., Influences of contact electrode shape and incidence direction on p-i-n photodiodes, IET Optoelectronics 13(4), 2019: 151-154. https://doi.org/10.1049/iet-opt.2018.5037
- [56] WEI J., NIU H.J., CHEN Q.T., LI Y.H., LIU K., DUAN X.F., HUANG Y.Q., Research on PIN photodetector with novel low-loss electrode, Journal of Liaocheng University (Natural Science Editions) 38(1), 2025: 23-33 (in Chinese).
- [57] SHIMIZU N., WATANABE N., FURUTA T., ISHIBASHI T., Improved response of uni-traveling-carrier photodiodes by carrier injection, Japanese Journal of Applied Physics 37(3S), 1998: 1424. https:// doi.org/10.1143/JJAP.37.1424
- [58] ISHIBASHI T., FURUTA T., FUSHIMI H., ITO H., Photoresponse characteristics of uni-traveling-carrier photodiodes, Proceedings of the SPIE, Vol. 4283, Physics and Simulation of Optoelectronic Devices IX: 2001. https://doi.org/10.1117/12.432597
- [59] WILLIAMS K.J., ESMAN R.D., WILSON R.B., KULICK J.D., Differences in p-side and n-side illuminated p-i-n photodiode nonlinearities, IEEE Photonics Technology Letters 10(1), 1998: 132-134. https://doi.org/10.1109/68.651136
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30a34cb6-954f-42b9-9aaf-a34c4459ef5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.