PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of Organic Soils Subsidence in the Vicinity of Hydraulic Structures – Case Study of a Subirrigation System in Central Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The consequences of organic soil subsidence gained considerable importance in a wide range of scientific literature. Since most of the works focused mainly on the subsidence of the land surface, less attention was paid to the effects on hydraulic structures, either to their malfunctioning or to the proper management of the subirrigation systems. For the reasons mentioned above, the paper considers the selected technical parameters (underground pipelines covering thickness and soil subsidence behind inlet and outlet protections) of 37 culverts (communication structures) and 42 culvert-gates (communication and water damming). All the structures were located within the area of a subirrigation system on the previously drained organic soils (Solec system, Mazovian Voivodship, 30 km south of Warsaw). They underwent field measurements of the pipelines covering subsidence and land surface lowering behind their protections on the left and right side of the inlet and outlet section. The achieved results were confronted with the adopted limit and admissible values. Due to the progressing congestion and subsidence of organic soil, the covering thickness of pipelines did not exceed the limit value for 38.5% of the culverts and 36% of culvert-gates. From a long-term perspective (1971–2014) the average subsidence rates in the vicinity of the structures and surrounding peatland surface were found as comparable, ranging from 0.63 to 0.83 cm/year. Particular attention was paid to the influence of water damming that was evident for the inlet sections of culvertgates showing considerably lower subsidence and damage degree.
Rocznik
Strony
64--74
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Water Centre, Warsaw University of Life Sciences, ul. Ciszewskiego 6, 02-766 Warsaw, Poland
  • Institute of Environmental Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-787 Warsaw, Poland
  • Institute of Civil Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska159, 02-787 Warsaw, Poland
Bibliografia
  • 1. Bednarczyk S., Bolt A., Mackiewicz S. 2009. Stability and safety of weirs and dams. Gdansk Technical University Press, Gdańsk (in Polish).
  • 2. Berglund Ö., Berglund K. 2010. Distribution and cultivation intensity of agricultural peat and gyttja soils in Sweden and estimation of greenhouse gas emissions from cultivated peat soils. Geoderma, 154, 173–180.
  • 3. Chrzanowski S., Szuniewicz J. 2002. The disappearance of organic soils in intensive drainage peatland near Biebrza. Water – Environment – Rural Areas, 2(2), 129–137 (in Polish).
  • 4. Couwenberg J. 2011. Greenhouse gas emissions from managed peat soils: is the IPCC reporting guidance realistic? Mires and Peat, 8(02), 1–10.
  • 5. Czaplak I., Dembek W. 2000. Torfowiska Polski jako źródło emisji dwutlenku węgla.[ Polish peatlands as a source of carbon dioxide emission]. Educational Annals, 6/200, 61–71. Institute of Land Reclamation and Grassland Farming Press, Falenty, Poland (in Polish).
  • 6. Deverel S., Ingrum T., Leighton D. 2016. Present – day oxidative subsidence of organic soils and mitigation in the Sacramento – San Joaquin Delta, California, USA. Hydrogeology Journal, 24, 569–586.
  • 7. Gąsowska M., Oleszczuk R., Urbański J. 2019. The estimation of the subsidence rate of drained peatland and verification of empirical equations of this process. Scientific Review – Engineering and Environmental Sciences, 28 (1), 95–104.
  • 8. Gebhard S., Fleige H., Horn R. 2012. Anisotropic shrinkage of mineral and organic soils and its impact on soil hydraulic properties. Soil Tillage Research, 125, 96–104.
  • 9. GrandClement E., Anderson K., Smith D., Luscombe D., Gatis N., Ross M., Brazier E. 2013. Evaluating ecosystem goods and services after restoration of marginal upland peatlands in South – West England. Journal of Applied Ecology, 50, 324–334.
  • 10. Grzywna A. 2017. The degree of peatland subsidence resulting from drainage of land. Environmental Earth Sciences, 76(559), 1–8.
  • 11. Hendriks R. 2004. An analytical equation for describing the shrinkage characteristics of peat soils. Proc. of the 12th International Peat Congress, 1343–1348.
  • 12. Hoogland T., van den Akker J., Brus D. 2012. Modelling the subsidence of peat soils in the Dutch coastal area. Geoderma, 171–172, 92–97.
  • 13. Ilnicki P., Szajdak L. 2016. Peatland disappearance. Wydawnictwo PTPN, Poznań (in Polish).
  • 14. Joosten H., Clarke D. 2002. Wise use of mires and peatlands – background and principles including a framework for decision – making. International Mire Conservation Group and International Peat Society. Saarijärvi, Finland.
  • 15. Jurczuk S. 2000. The Influence of Water Regulations on Subsidence and Mineralisation of Organic Soils. Biblioteczka Wiadomości IMUZ 96, Falenty (in Polish).
  • 16. Jurczuk S. 2011. Melioracyjne uwarunkowania zachowania materii organicznej w użytkowanych łąkowo glebach pobagiennych. Water-Environment-Rural Areas. Treatises and Monographs no 30, Falenty, Institute of Land Reclamation and Grassland Farming press (in Polish).
  • 17. Kaca E., Interewicz A. 1991. Metoda oceny stanu technicznego urządzeń melioracyjnych w systemach nawodnień podsiąkowych [Estimation of subirrigation hydraulic strucutres physical status]. Postęp w projektowaniu i eksploatacji systemów nawodnień podsiąkowych. Konferencja naukowa Brok. Wydawnictwo SGGW (WULS Publishing) (in Polish).
  • 18. Kluge B., Wessolek G., Facklam M., Lorenz M., Schwarzel K. 2008. Longterm carbon loss and CO2-C release of drained peatland soils in northeast Germany. European Journal of Soil Science, 59, 1076–1086.
  • 19. Lipka K., Zając E., Hlotov V., Siejka Z. 2017. Disappearance rate of a peatland in Dublany near Lviv (Ukraine) drained in 19th century. Mires and Peat, 19, 1–15.
  • 20. Mioduszewski W., Dembek W. 2009. Woda na obszarach wiejskich [Water in Rural Areas]. Wyd. IMUZ, Falenty [Institute of Land Reclamation and Grassland Farming Press].
  • 21. Nyc K., Pokładek R. 2009. Eksploatacja systemów melioracyjnych podstawą racjonalnej gospodarki wodnej w środowisku przyrodniczo-rolniczym. Współczesne problemy inżynierii środowiska XIV. Wyd. UWP [Wroclaw University of Life Sciences Publishing] (in Polish).
  • 22. Oleszczuk R., Regina K., Szajdak L., Höper H., Maryganowa V. 2008. Impacts of agricultural utilization of peat soils on the greenhouse gas balance. Peatlands and Climate Change. International Peat Society. Jyväskylä, Finland.
  • 23. Oleszczuk R .2011. Analysis of volume changes characteristics of drying and rewetting fen peat soils. Warsaw University of Life Sciences – SGGW Press, Warsaw (in Polish).
  • 24. Oleszczuk R., Urbański J., Gąsowska M. 2014. The influence of morphological changes of small lowland river on discharge rate. Annals of Warsaw University of Life Sciences – SGGW Land Reclamation, 46(4), 17–28.
  • 25. Oleszczuk R., Gąsowska M., Guz G., Urbański J., Hewelke E. 2017. The influence of subsidence and disappearance of organic moorsh soils on longitudinal sub – irrigation ditch profiles. Acta Scientarum Polonorum Formatio Circumiectus, 16(3), 3–13 (in Polish).
  • 26. Oleszczuk R., Stocka I., Urbański J., Hewelke E. 2017. Stan techniczny budowli piętrzących na przykładzie wybranego systemu nawodnień podsiąkowych. Woda – Środowisko – Obszary Wiejskie, 17 (57), 89 – 100 (in Polish).
  • 27. Querner E., Jansen P., van den Akker J., Kwakernaak C. 2012. Analysing water level strategies to reduce soil subsidence in Dutch peat meadows. Journal of Hydrology, 446–447, 59–69.
  • 28. Schipper L., McLeod M. 2002. Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato region, New Zealand. Soil Use and Management, 18, 91–93.
  • 29. Snowden J. 1980. Drainage-induced land subsidence in metropolitan New Orleans. Louisiana, U.S.A. University of New Orleans.
  • 30. Urbański J., Oleszczuk R., Brandyk A., Zając E. 2018. Estimation of lowland river cross-section changes for different soils. Annals of Warsaw University of Life Sciences – SGGW Land Reclamation, 50(4), 291–300.
  • 31. Wallage Z., Holden J., McDonald T. 2006. Drain blocking: an effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland. Science of the Total Environment, 367, 811–821.
  • 32. Zając E., Zarzycki J., Ryczek M. 2018. Substrate quality and spontaneous revegetation of extracted peatland: case study of an abandoned Polish mountain bog. Mires and Peat, 21, 1–14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30a0fdce-f530-4bc9-adfb-f6ec242814f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.