PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Improved Simple Method for the Calculation of the Detonation Performance of CHNOFCl, Aluminized and Ammonium Nitrate Explosives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An improved simple method is presented for calculation of the detonation velocity of CHNO and CHNOFCl explosives, as well as non-ideal explosives containing aluminum (Al) and ammonium nitrate (AN) additives. In contrast to the available complex computer codes, where the estimated detonation velocities of non-ideal explosives for equilibrium and steady state calculations show significant differences from the measured data, this simple method gives more reliable results. Suitable decomposition paths are suggested in which the partial interaction of Al with the gaseous products and the decomposition of AN are assumed for composite explosives containing Al/AN additives. The predicted detonation velocities using the new method are good compared to those from one of the well-known empirical methods and from computer codes using full and partial equilibrium of Al/AN.
Rocznik
Strony
381--396
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of Chemistry, Malek-Ashtar University of Technology, Shahin-Shahr P.O. Box 83145/115, Islamic Republic of Iran
autor
  • Department of Chemistry, Faculty of Science, Yazd University, Yazd P.O. Box 89195/741, Islamic Republic of Iran
autor
  • Department of Chemistry, Malek-Ashtar University of Technology, Shahin-Shahr P.O. Box 83145/115, Islamic Republic of Iran
  • Department of Chemistry, Faculty of Science, Yazd University, Yazd P.O. Box 89195/741, Islamic Republic of Iran
autor
  • Department of Chemistry, Malek-Ashtar University of Technology, Shahin-Shahr P.O. Box 83145/115, Islamic Republic of Iran
Bibliografia
  • [1] Agrawal J.P., High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, Cornwall, Great Britain 2010; ISBN 978-3-527-32610-5.
  • [2] Klapötke T.M., Chemistry of High Energy Materials, 2nd ed., Walter de Gruyter, Berlin, 2012; ISBN 978-3-11-027358-8.
  • [3] Sikder A.K., Maddala G., Agrawal J.P., Singh H., Important Aspects of Behaviour of Organic Energetic Compounds: a Review, J. Hazard. Mater., 2001, A84, 1-26.
  • [4] Keshavarz M.H., Research Progress on Heats of Formation and Detonation of Energetic Compounds, in: Hazardous Materials: Types, Risks and Control, (Brar S.K., Ed.), Nova Science Publishers Inc., New York, 2011, pp. 339-359; ISBN 978-1-61324-425-8.
  • [5] Agrawal J.P., Hodgson R., Organic Chemistry of Explosives, Wiley, New Delhi, 2007; ISBN 978-0-470-02967-1.
  • [6] Dobratz B.M., Crawford P.C., LLNL Explosives Handbook: Properties of Chemical Explosives and Explosive Simulants, Lawrence Livermore National Laboratory, Livermore, CA, 1985.
  • [7] Cooper P.W., Explosives Engineering, Wiley VCH, New York, 1996; ISBN 0-471-18636-8.
  • [8] Fried L.E., Howard W.M., Souers P.C., CHEETAH 2.0 User’s Manual (LLNL UCRL-MA-117541 Rev. 5), Lawrence Livermore National Laboratory, Livermore, CA, 1998.
  • [9] Sućeska M., Calculation of Detonation Parameters by EXPLO5 Computer Program, Mater. Sci. Forum, 2004, 465, 325-330.
  • [10] Fried L.E., Howard W.M., Zaug J.M., The Equation of State and Chemistry of Detonation Products, in: Theoretical and Computational Chemistry, Vol. 13, Energetic Materials, Part 2. Detonation, Combustion, (Politzer P., Murray J.S., Eds.), 2003, pp. 193-224; ISBN 0 444 51519 4.
  • [11] Mader C.L., Numerical Modeling of Explosives and Propellants, 3rd ed., Taylor and Francis Group, Boca Raton, 2008; ISBN 9781420052381.
  • [12] Hobbs M.L., Baer M.R., Calibrating the BKW-EOS with a Large Product Species Data Base and Measured CJ Properties, 10th Int. Symp. Detonation, Boston, United States, Office of Naval Research, 1993, 409-418.
  • [13] Muthurajan H., Sivabalan R., Talawar M., Venugopalan S., Gandhe B., Computer Code for the Optimization of Performance Parameters of Mixed Explosive Formulations, J. Hazard. Mater., 2006, 136(3), 475-481.
  • [14] Keshavarz M.H., Motamedoshariati H., Moghayadnia R., Nazari H.R., Azarniamehraban J., A New Computer Code to Evaluate Detonation Performance of High Explosives and Their Thermochemical Properties, Part I, J. Hazard. Mater., 2009, 172(2), 1218-1228.
  • [15] Braithwaite M., Sharpe G.J., Non-ideal Detonation Behavior in Commercial Explosives, in: Performance of Explosives and New Developments, (Mohanty B., Singh V.K., Eds.), Taylor & Francis Group, New York, 2013, pp. 11-16; ISBN 978-0-415-62142-7.
  • [16] Pepekin V.I., Gubin S.A., Heat of Explosion of Commercial and Brisant High Explosives, Combust. Explos. Shock Waves (Engl. Transl.), 2007, 43(2), 212-218.
  • [17] Zygmunt B., Detonation Parameters of Mixtures Containing Ammonium Nitrate and Aluminium, Cent. Eur. J. Energ. Mater., 2009, 6(1), 57-66.
  • [18] Meyer R., Köhler J., Homburg A., Explosives, 6th ed., Wiley-VCH, Weinheim, 2007; ISBN 978-3-527-31656-4.
  • [19] Vadhe P.P., Pawar R.B., Sinha R.K., Asthana S.N., Rao A.S., Cast Aluminized Explosives (Review), Combust. Explos. Shock Waves (Engl. Transl.), 2008, 44(4), 461-477.
  • [20] Keshavarz M.H., New Method for Predicting Detonation Velocities of Aluminized Explosives, Combust. Flame, 2005, 142(3), 303-307.
  • [21] Keshavarz M.H., Teimuri Mofrad R., Esmail Poor K., Shokrollahi A., Zali A., Yousefi M.H., Determination of Performance of Non-ideal Aluminized Explosives, J. Hazard. Mater., 2006, 137(1), 83-87.
  • [22] Keshavarz M.H., Simple Correlation for Predicting Detonation Velocity of Ideal and Non-ideal Explosives, J. Hazard. Mater., 2009, 166(2), 762-769.
  • [23] Keshavarz M.H., Prediction of Detonation Performance of CHNO and CHNOAl Explosives through Molecular Structure, J. Hazard. Mater., 2009, 166(2), 1296-1301.
  • [24] Keshavarz M.H., Predicting Detonation Performance in Non-ideal Explosives by Empirical Methods, in: Explosive Materials: Classification, Composition and Properties, (Janssen T.J., Ed.), Nova Science Publishers, Inc., New York, 2011, pp. 179-201; ISBN 978-1-61761-188-9.
  • [25] Keshavarz M.H., Shokrolahi A., Pouretedal H.R., A New Method to Predict Maximum Attainable Detonation Pressure of Ideal and Aluminized Energetic Compounds, High Temp. − High Press., 2012, 41(5), 349-365.
  • [26] Keshavarz M.H., Predicting Maximum Attainable Detonation Velocity of CHNOF and Aluminized Explosives, Propellants Explos. Pyrotech., 2012, 37(4), 489-497.
  • [27] Keshavarz M.H., Zamani A., Shafiee M., Predicting Detonation Performance of CHNOFCl and Aluminized Explosives, Propellants Explos. Pyrotech., 2014, 39(5), 749-754.
  • [28] Keshavarz M.H., Zamani A., A Simple and Reliable Method for Predicting the Detonation Velocity of CHNOFCl and Aluminized Explosives, Cent. Eur. J. Energ. Mater., 2015, 12(1), 13-33.
  • [29] Zhang Q., Chang Y., Prediction of Detonation Pressure and Velocity of Explosives with Micrometer Aluminum Powders, Cent. Eur. J. Energ. Mater., 2012, 9(1), 77-86.
  • [30] Kamlet M.J., Jacobs S.J., Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives, J. Chem. Phys., 1968, 48(1), 23-35.
  • [31] Kamalvand M., Keshavarz M.H., Jafari M., Prediction of the Strength of Energetic Materials Using the Condensed and Gas Phase Heats of Formation, Propellants Explos. Pyrotech., 2015, 40(4), 551-557.
  • [32] Makridakis S., Hibon M., Evaluating Accuracy (or Error) Measures, INSEAD, Fontainebleau, France, 1995.
  • [33] Keshavarz M.H., Pouretedal H.R., Estimation of Detonation Velocity of CHNOFCl Explosives, High Temp. − High Press., 2003/2006, 35/36(5), 593-600.
  • [34] Keshavarz M.H., Pouretedal H.R., An Empirical Method for Predicting Detonation Pressure of CHNOFCl Explosives, Thermochim. Acta, 2004, 414(2), 203-208.
  • [35] Engineering Design Handbook, Explosives Series, Properties of Explosives of Military Interest, (AMCP 706-177), US Army Material Command, 1971.
  • [36] Military Explosives, TM 9-1300-214, US Department of the Army, Washington, D.C. 1990.
  • [37] Lu J.P., Evaluation of the Thermochemical Code CHEETAH 2.0 for Modelling Explosives Performance, DSTO-TR-1199, Aeronautical and Maritime Research Laboratory, Australia, 2001.
  • [38] Pedley J.B., Naylor R.D., Kirby S.P., Thermochemical Data of Organic Compounds, 2nd ed., Chapman and Hall Ltd., New York, 1986; ISBN 978-94-010-8319-5.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30994611-c071-4283-8d5f-8a4803e347d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.