PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Precursory deformation responses in different directions to catastrophic failure of uniaxially compressed sandstones

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The precursory acceleration of deformation is widely validated as a method for predicting the failure time. Damage evolution inside rocks generally results in complex strain patterns in the vicinity of failure and various responses of deformation in different directions. However, it is still unclear what the differences and similarities are during the evolution of strain components. In this paper, we compare the evolving properties of strain components in different directions based on experiments of sandstones under uniaxial compression. It is shown that the temporal patterns of vertical strains are much more complex in spatial distributions than that of horizontal strains. The horizontal strain presents two kinds of time courses characterized by precursory accelerations in both the strain localized zone and its surrounding areas, and the evolution without accelerations in positions is far from the strain localized zone. However, the vertical strain components corresponding to loading direction present complex evolving patterns with five kinds of time courses. The final amplitudes of horizontal strains are much higher than vertical components. Horizontal strains follow the power law acceleration with the well-defined exponents, but the exponents for vertical components are more scattered. Thus, horizontal strains can be applied to predict the failure time.
Rocznik
Strony
39--60
Opis fizyczny
Bibliogr. 61 poz., rys., wykr.
Twórcy
autor
  • School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao, China
autor
  • State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
autor
  • School of Civil and Mechanical Engineering, Curtin University, Perth, Australia
Bibliografia
  • 1. E. Russo, A. Tibaldi, G.P. Waite, F.L. Bonali, F. Massin, J. Farrell, Unraveling the complex deformation pattern at yellowstone plateau through seismicity and fracture analysis, Tectonophysics, 778, 2020.
  • 2. R. Sparks, Forecasting volcanic eruptions, Earth and Planetary Science Letters, 210, 1-2, 1–15, 2003.
  • 3. S.W. Hao, H.Y. Wang, M.F. Xia, F.J. Ke, Y.L. Bai, Relationship between strain localization and catastrophic rupture, Theoretical and Applied Fracture Mechanics, 48, 1, 41–49, 2007.
  • 4. S.W. Hao, M.F. Xia, F.J. Ke, Y.L. Bai, Evolution of localized damage zone in heterogeneous media, International Journal of Damage Mechanics, 19, 7, 787–804, 2010.
  • 5. D. Shirole, G. Walton, A. Hedayat, Experimental investigation of multi-scale strainfield heterogeneity in rocks, International Journal of Rock Mechanics and Mining Sciences, 127, 104212, 2020.
  • 6. J. Xue, S. W. Hao, R. Yang, P. Wang, Y.L. Bai, Localization of deformation and its effects on power-law singularity preceding catastrophic rupture in rocks, International Journal of Damage Mechanics, 29, 1, 86–102, 2020.
  • 7. V. Durand, A. Gualandi, S. Ergintav, G. Kwiatek, M. Haghshenas, M. Motagh, G. Dresen, P. Martínez-Garzón, Deciphering aseismic deformation along submarine fault branches below the eastern sea of Marmara (Turkey): Insights from seismicity, strainmeter, and GNSS data, Earth and Planetary Science Letters, 594, 117702, 2022.
  • 8. M.Z. Lyu, K.J. Chen, C.H. Xue, N. Zang, W. Zhang, G.G. Wei, Overall subshear but locally supershear rupture of the 2021 Mw7.4 Maduo earthquake from high-rate GNSS waveforms and three-dimensional InSAR deformation, Tectonophysics, 839, 229542, 2022.
  • 9. J.R. Murray, N. Bartlow, Y. Bock, B. A. Brooks, J. Foster, J. Freymueller, W.C. Hammond, K. Hodgkinson, I. Johanson, A. López-Venegas, D. Mann, G.S. Mattioli, T. Melbourne, D. Mencin, E. Montgomery-Brown, M.H. Murray, R. Smalley, V. Thomas, Regional global navigation satellite system networks for crustal deformation monitoring, Seismological Research Letters, 91, 2A, 552–572, 2019.
  • 10. Y. Liu, S. Han, L.Y. Xiong, Y.M. Wen, H.H. Li, C.J. Xu, Three-dimensional deformation velocity field and kinematic characteristic of the middle and east parts of Haiyuan fault zone from InSAR and GPS observations, Advances in Space Research, 71, 8, 3175–3185, 2023.
  • 11. R. Janeliukstis, X. Chen, Review of digital image correlation application to large-scale composite structure testing, Composite Structures, 271, 114143, 2021.
  • 12. B. Pan, Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals, Measurement Science and Technology, 29, 8, 82001, 2018.
  • 13. W.H. Peters, W.F. Ranson, Digital imaging techniques in experimental stress analysis, Optical Engineering, 21, 3, 427–431, 1982.
  • 14. A. Cartwright-Taylor, I.G. Main, I.B. Butler, F. Fusseis, M. Flynn, A. King, Catastrophic failure: how and when? Insights from 4D in-situ x-ray micro-tomography, Journal of Geophysical Research: Solid Earth, 125, 8, e2020JB019642, 2020.
  • 15. J.A. Mcbeck, B. Cordonnier, S. Vinciguerra, F. Renard, Volumetric and shear strain localization in mt. Etna basalt, Geophysical Research Letters, 46, 5, 2425–2433, 2019.
  • 16. J.Z. Zhang, X.P. Zhou, Fracture process zone (FPZ)in quasi-brittle materials: review and new insights from flawed granite subjected to uniaxial stress, Engineering Fracture Mechanics, 274, 108795, 2022.
  • 17. C. Couture, P. Bésuelle, A true triaxial experimental study on porous vosges sandstone: from strain localization precursors to failure using full-field measurements, International Journal of Rock Mechanics and Mining Sciences, 153, 105031, 2022.
  • 18. B. Voight, A method for prediction of volcanic eruptions, Nature, 332, 6160, 125–130, 1988.
  • 19. B. Voight, A relation to describe rate-dependent material failure, Science, 243, 4888, 200–203, 1989.
  • 20. B. Voight, R.R. Cornelius, Prospects for eruption prediction in near real-time, Nature, 350, 6320, 695–698, 1991.
  • 21. A.F. Bell, M. Naylor, M.J. Heap, I.G. Main, Forecasting volcanic eruptions and other material failure phenomena: an evaluation of the failure forecast method, Geophysical Research Letters, 38, 15, 2011.
  • 22. S.W. Hao, H. Yang, D. Elsworth, An accelerating precursor to predict “time-to-failure” in creep and volcanic eruptions, Journal of Volcanology and Geothermal Research, 343, 252–262, 2017.
  • 23. A.F. Bell, C.R.I. Kilburn, Precursors to dyke-fed eruptions at basaltic volcanoes: insights from patterns of volcano-tectonic seismicity at Kilauea volcano, Hawaii, Bulletin of Volcanology, 74, 2, 325–339, 2012.
  • 24. R.R. Cornelius, P.A. Scott, A material failure relation of accelerating creep as empirical description of damage accumulation, Rock Mechanics and Rock Engineering, 26, 3, 233–252, 1993.
  • 25. R.R. Cornelius, B. Voight, Seismological aspects of the 1989–1990 eruption at redoubt volcano, Alaska: the Materials Failure Forecast Method (FFM)with RSAM and SSAM seismic data, Journal of Volcanology and Geothermal Research, 62, 1, 469–498, 1994.
  • 26. R.R. Cornelius, B. Voight, Graphical and pc-software analysis of volcano eruption precursors according to the Materials Failure Forecast Method (FFM), Journal of Volcanology and Geothermal Research, 64, 3, 295–320, 1995.
  • 27. Y. Lavallée, P.G. Meredith, D.B. Dingwell, K.U. Hess, J. Wassermann, B. Cordonnier, A. Gerik, J.H. Kruhl, Seismogenic lavas and explosive eruption forecasting, Nature, 453, 7194, 507–510, 2008.
  • 28. Y. Niu, X.P. Zhou, Forecast of time-of-instability in rocks under complex stress conditions using spatial precursory ae response rate, International Journal of Rock Mechanics and Mining Sciences, 147, 104908, 2021.
  • 29. R. Smith, P.R. Sammonds, C.R.J. Kilburn, Fracturing of volcanic systems: experimental insights into pre-eruptive conditions, Earth and Planetary Science Letters, 280, 1-4, 211–219, 2009.
  • 30. J.Z. Zhang, X.P. Zhou, Forecasting catastrophic rupture in brittle rocks using precursory ae time series, Journal of Geophysical Research: Solid Earth, 125, 8, 2020.
  • 31. X.P. Zhou, C.Q. Li, Prospective forecast of sliding instability time using a precursory ae time series, Tribology International, 176, 107887, 2022.
  • 32. T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini, G. Gigli, N. Casagli, Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses, Landslides, 14, 2, 517–534, 2017.
  • 33. X. Fan, Q. Xu, J. Liu, S.S. Subramanian, C. He, X. Zhu, L. Zhou, Successful early warning and emergency response of a disastrous rockslide in Guizhou province, China, Landslides, 16, 12, 2445–2457, 2019.
  • 34. C. Kilburn, D.N. Petley, Forecasting giant, catastrophic slope collapse: lessons from vajont, Northern Italy, Geomorphology, 54, 21–32, 2003.
  • 35. C.R.J. Kilburn, Multiscale fracturing as a key to forecasting volcanic eruptions, Journal of Volcanology and Geothermal Research, 125, 3, 271–289, 2003.
  • 36. R. Smith, C.R.J. Kilburn, Forecasting eruptions after long repose intervals from accelerating rates of rock fracture: June 1991 eruption of Mount Pinatubo, Philippines, Journal of Volcanology and Geothermal Research, 191, 1-2, 129–136, 2010.
  • 37. R. Smith, C.R.J. Kilburn, P.R. Sammonds, Rock fracture as a precursor to lava dome eruptions at Mount st Helens from June 1980 to October 1986, Bulletin of Volcanology, 69, 6, 681–693, 2007.
  • 38. J. Corcoran, Rate-based structural health monitoring using permanently installed sensors, Proceedings of the Royal Society. A, Mathematical, Physical, and Engineering Sciences, 473, 2205, 1–18, 2017.
  • 39. R. Hill, J.W. Hutchinson, Bifurcation phenomena in the plane tension test, Journal of the Mechanics and Physics of Solids, 23, 4, 239–264, 1975.
  • 40. D.A. Lockner, J.D. Byerlee, V.S. Kuksenko, A.V. Ponomarev, A. Sidorin, Quasi-static fault growth and shear fracture energy in granite, Nature, 350, 39–42, 1991.
  • 41. A.P. Rathbun, C. Marone, Effect of strain localization on frictional behavior of sheared granular materials, Journal of Geophysical Research-Solid Earth, 115, 2010.
  • 42. R.E. Rizzo, D. Healy, M.J. Heap, N.J. Farrell, Detecting the onset of strain localization using two-dimensional wavelet analysis on sandstone deformed at different effective pressures, Journal of Geophysical Research: Solid Earth, 123, 12, 10460–10478, 2018.
  • 43. J.W. Rudnicki, J.R. Rice, Conditions for the localization of deformation in pressure-sensitive dilatant materials, Journal of the Mechanics and Physics of Solids, 23, 6, 371–394, 1975.
  • 44. H. Zhang, G.Y. Huang, H.P. Song, Y.L. Kang, Experimental characterization of strain localization in rock, Geophysical Journal International, 194, 3, 1554–1558, 2013.
  • 45. G.D. Nguyen, H.H. Bui, A thermodynamics and mechanism-based framework for constitutive models with evolving thickness of localisation band, International Journal of Solids and Structures, 187, 100–120, 2020.
  • 46. V. Thakur, S. Nordal, G. Viggiani, P. Charrier, Shear bands in undrained plane strain compression of norwegian quick clays, Canadian Geotechnical Journal, 55, 1, 45–56, 2018.
  • 47. N.G.W. Cook, The failure of rock, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 2, 4, 389–403, 1965.
  • 48. B.G. Tarasov, T.R. Stacey, Features of the energy balance and fragmentation mechanisms at spontaneous failure of Class I and Class II rocks, Rock Mechanics and Rock Engineering, 50, 10, 2563–2584, 2017.
  • 49. Q.Z. Zhu, Q.J. Yu, Theoretical analysis of the triggering condition of Class-ii rock behaviors, International Journal of Rock Mechanics and Mining Sciences, 153, 105109, 2022.
  • 50. S.W. Hao, F. Rong, M.F. Lu, H.Y. Wang, M.F. Xia, F.J. Ke, Y.L. Bai, Power-law singularity as a possible catastrophe warning observed in rock experiments, International Journal of Rock Mechanics and Mining Sciences, 60, 253–262, 2013.
  • 51. L.H. Liang, X.N. Li, H.Y. Liu, Y.B. Wang, Y.G. Wei, Power-law characteristics of damage and failure of ceramic coating systems under three-point bending, Surface and Coatings Technology, 285, 113–119, 2016.
  • 52. J. Xue, S.W. Hao, J. Wang, F.J. Ke, C.S. Lu, Y.L. Bai, The changeable power law singularity and its application to prediction of catastrophic rupture in uniaxial compressive tests of geomedia, Journal of Geophysical Research: Solid Earth, 123, 4, 2645–2657, 2018.
  • 53. S. Jonsson, Fault slip distribution of the 1999 Mw7.1 Hector Mine, California, Earth-quake, Estimated from Satellite Radar and GPS Measurements, Bulletin of the Seismo-logical Society of America, 92, 4, 1377–1389, 2002.
  • 54. J.R. Weiss, R.J. Walters, Y. Morishita, T.J. Wright, M. Lazecky, H. Wang, E. Hussain, A.J. Hooper, J.R. Elliott, C. Rollins, C. Yu, P.J. González, K. Spaans, Z. Li, B. Parsons, High-resolution surface velocities and strain for anatolia from sentinel-1 InSAR and GNSS data, Geophysical Research Letters, 47, 17, 2020.
  • 55. R. Bürgmann, P.A. Rosen, E.J. Fielding, Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation, Annual Review of Earth and Planetary Sciences, 28, 1, 169–209, 2000.
  • 56. H. Wang, T.J. Wright, J.Z. Liu, L.C. Peng, Strain rate distribution in south-central Tibet from two decades of InSAR and GPS, Geophysical Research Letters, 46, 10, 5170–5179, 2019.
  • 57. X.P. Zhou, J.Z. Zhang, Damage progression and acoustic emission in brittle failure of granite and sandstone, International Journal of Rock Mechanics and Mining Sciences, 143, 104789, 2021.
  • 58. K. Aki, A new view of earthquake and volcano precursors, Earth, Planets and Space, 56, 8, 689–713, 2004.
  • 59. C. Scholz, Whatever happened to earthquake prediction, Geotimes, 42, 3, 16–19, 1997.
  • 60. P.G. Silver, H. Wakita, A search for earthquake precursors, Science, 273, 5271, 77–78, 1996.
  • 61. S.J. Zhou, S.W. Hao, D. Elsworth, Magnitude and variation of the critical power law exponent and its physical controls, Physica A: Statistical Mechanics and Its Applications, 510, 552–557, 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30950ee1-1d52-47ef-8465-d448ba1dad35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.