PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of fertilization on microbial activities, soil hydrophobicity and mineral nitrogen leaching

Identyfikatory
Warianty tytułu
PL
Wpływ nawożenia na aktywność mikroorganizmów, hydrofobowość gleby oraz wypłukiwanie azotu mineralnego
Języki publikacji
EN
Abstrakty
EN
This work presents the analysis of the influence of compost and reclamation substrate addition and mineral fertilizers application on leaching of mineral nitrogen, microbial activities, soil hydrophobicity and plant biomass production. To demonstrate the effect of compost, reclamation substrate and mineral nitrogen (Nmin) addition on above parameters, the pot experiment was performed. As a model crop, Deschampsia caespitosa L. was used and cultivated for 63 days in climate chamber. The leaching of Nmjn was measured by application of ion exchange discs, soil hydrophobicity was determined based on the values of saturated hydraulic conductivity (Ksat) and microbial activity was expressed as basal (BR) and substrate induced respiration (SIR). Four variants (V1-V4) with different doses of fertilizers were prepared: V1 - control without addition of fertilizers; V2 - this variant of experiment was prepared as mixture of compost and arable land in ratio 7:3; V3 - 90 g/m2 of mineral fertilizers NPK (in the ratio 1:1:1) were applied there and into V4, dose 30 g of compost were applied. The significant differences (P < 0.05) in the detection of Nmin, values of Ksat and SIR were found. The highest decrease of mineral nitrogen leaching was observed by the simultaneous applications of compost (V4) to arable soil, about 50% in comparison with the variant V4 (application of mineral fertilization) and about 10% in comparison with the control. Variants with addition of compost (V2 and V4) showed higher values than variants without, which were measured at three stages (before application of Nmin - 12 days after establishment of the experiment; after application of Nmin - 34 days; at end of the experiment - 63 days). During the experiment, two types of respiration were measured: BR and SIR. The significant differences in SIR were found between variants with addition of compost and variants without. The SIR (cumulative production of CO2) was higher about 25% in variants V2 and V4 compared to variants V1 and V3. The highest values of Ksat were found in variants with addition of compost. Conversely, the lowest value of Ksat was detected in variant with addition of Nmin. Low values of Ksat indicate an increased level of hydrophobicity.
PL
W pracy przedstawiono analizę wpływu kompostu, substratu rekultywacyjnego oraz zastosowanie nawozów mineralnych na wymywanie azotu mineralnego, działalności mikroorganizmów, hydrofobowość gleby i produkcję biomasy roślinnej. W celu zbadania efektu wykorzystania kompostu, substratu rekultywacyjnego oraz azotu mineralnego (Nmin) został przeprowadzony eksperyment w doniczkach. Jako modelowa roślina została wykorzystana Deschampsia caespitosa L, którą hodowano przez 63 dni w komorze klimatycznej. Wymywanie Nmin zostało zmierzone przy zastosowaniu tarcz jonowymiennych, hydrofobowość gleby określono na podstawie wartości przewodnictwa nasyconego hydraulicznego (Ksat), a aktywność mikrobiologiczną wyrażono jako podstawową (BR) oraz wskaźnik oddychania podłoża (SIR). Wykorzystano cztery próbki (V1-V4) o różnych dawkach nawozów: V1 - kontrola bez dodatku nawozu, V2 - mieszanka kompostu oraz gleby w stosunku 7:3, V3 - 90 g/m2 nawozu mineralnego NPK (w stosunku 1:1:1) oraz V4 - dawka 30 g kompostu. Stwierdzono znaczne różnice (P < 0,05) w badaniu Nmin, wartości Ksat oraz SIR. Największy ubytek azotu mineralnego zaobserwowano podczas jednoczesnej aplikacji kompostu (V4) do gleby uprawnej, około 50% w porównaniu z próbką V4 (zastosowanie nawożenia mineralnego) i około 10% w porównaniu z kontrolą. Próbki z dodatkiem kompostu (V2 i V4) wykazywały wyższe wartości niż próbki bez kompostu, co zostało zmierzone w trzech etapach (przed zastosowaniem Nmin - 12 dni po rozpoczęciu eksperymentu, po zastosowaniu Nmin - 34 dni oraz na koniec eksperymentu - 63 dni). Podczas eksperymentu respiracja była mierzona: BR oraz SIR. Wyraźne różnice w SIR zostały zaobserwowane pomiędzy próbkami z dodatkiem kompostu oraz próbkami bez dodatku kompostu. SIR (skumulowana produkcja CO2) była wyższa o około 25% w próbkach V2 oraz V4 w porównaniu z próbkami V1 oraz V3. Najwyższe wartości Ksat zaobserwowano w przypadku próbek z dodatkiem kompostu. Wartość najniższą Ksat zaobserwowano dla próbek bez dodatku Nmin. Niskie wartości Ksat wykazują zwiększony poziom hydrofobowości.
Rocznik
Strony
661--676
Opis fizyczny
Bibliogr. 36 poz., tab., wykr., rys.
Twórcy
autor
  • Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic, phone +420 545132484
  • Department of Applied and Landscape Ecology, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic, phone +420 545132484
autor
  • Department of Applied and Landscape Ecology, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic, phone +420 545132484
autor
  • Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic, phone +420 545132484
autor
  • Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic, phone +420 545132484
autor
  • Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic, phone +420 545132484
autor
  • Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic, phone +420 545132484
  • Department of Applied and Landscape Ecology, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic, phone +420 545132484
Bibliografia
  • [1] Różański S. Fractionation of selected heavy metals in agricultural soils. Ecol Chem Eng S. 2013;20(1):117-125. DOI: 10.2478/eces-2013-0009.
  • [2] Lang A, Bork HR. Past soil erosion in Europe. Boardman J, Poesen J, editors. Soil Erosion in Europe. Chichester: John Wiley & Sons; 2006:465-476. DOI: 10.1002/0470859202.
  • [3] Świtonia M. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. CATENA. 2014;116:173-184. DOI: 10.1016/j.catena.2013.12.015.
  • [4] Wolf B, Snyder GH. Sustainable Soils. The Place of Organic Matter in Sustaining Soils and their Productivity. Food Products Press. Binghamton; 2003.
  • [5] Abdollahi L, Schjonning P, Elmholt S, Munkholm LJ. The effects of organic matter application and intensive tillage and traffic on soil structure formation and stability. Soil Till Res. 2014;136:28-37. DOI: 10.1016/j.bbr.2011.03.031
  • [6] Halberg N, Alrϕe HF, Knudsen MT, Kristensen ES, editors. Global Development of Organic Agriculture. Challenges and Prospects. Wallingford: CABI Publishing; 2006.
  • [7] Slavík R, JulinovÁ M, Labudíková M. Screening of the spatial distribution of risk metals in topsoil from an industrial complex. Ecol Chem Eng S. 2012;19(2):259-272. DOI: 10.2478/v10216-011-0020-0.
  • [8] Bissonnais YL, Montier C, Jamagne M, Daroussin J, King D. Mapping erosion risk for cultivated soil in France. CATENA. 2002;46(2-3):207-220. DOI: 10.1016/S0341-8162(01)00167-9.
  • [9] Diaz LF, Bertoldi M, Bidlingmaier W, Stentiford E. Compost Science and Technology. Amsterdam: MA Elsevier; 2007.
  • [10] Plošek L, Nsanganwimana F, Pourrut B, Elbl J, Hynšt J, Kintl A, et al. The effect of compost addition on chemical and nitrogen characteristics, respiration activity and biomass production in prepared reclamation substrates. Int J Agri Scien Eng. 2013;7:363-369.
  • [11] Nevens F, Reheul D. The application of vegetable, fruit and garden waste (VFG) compost in addition to cattle slurry in a silage maize monoculture: nitrogen availability and use. Eur J Agron. 2003;19:189-203. DOI: 10.1016/S1161-0301(02)00036-9.
  • [12] Elbl J, Plošek L, Kintl A, Přichystalová J, Záhora J, Hynšt J. Effect of organic-waste compost addition on leaching of mineral nitrogen from arable land and plant production. World Academy of Science, Engineering and Technology. 2013;7:2066-2072.
  • [13] Peoples MB, Faizah AW, Rerkasem B, Herridge DF. Methods for Evaluating Nitrogen Fixation by Nodulated Legumes in the Field. Canberra: Australian Centre for International Agricultural Research; 1989.
  • [14] Bundy LG, Meisinger JJ. Nitrogen Availability Indices - Methods of Soil Analysis, Part 2. Microbiological and biochemical properties. SSA Book Series; 1994.
  • [15] Šimek M, Virtanen S, Krištůfek V, Simojoki A, Yli-Halla M. Evidence of rich microbial communities in the subsoil of boreal acid sulphate soil conductive to greenhouse gas emissions. Agric Ecosyst Environ. 2011;140:113-122. DOI: 10.1016/j.agee.2010.11.018.
  • [16] Robichaud PR, Lewis SA, Ashmun LE. New Procedure for Sampling Infiltration to Assess Post-fire Soil Water Repellency. Res. Note. RMRS-RN-33. Rocky Mountain Station U.S.: Department of Agriculture, Forest Service; 2008.
  • [17] Doerr SH, Shakesby RA, Walsh RPD. Soil water repellency: its causes, characteristics and hydro--geomorphological significance. Earth-Sci Rev. 200;51:35-65. DOI: 10.1016/S0012-8252(00)00011-8.
  • [18] Buczko U, Bens O, Hüttl RF. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma. 2005;126:317-336. DOI: 10.1016/j.geoderma.2004.10.003.
  • [19] Šindelář R, Kovaříček P, Vlášková M, Hůla J, Krouhlík M. Measurement of water infiltration into soil using round infiltrometer mini disk. Agritech Science. 2008;2:1-6.
  • [20] Lichner L, Hallett P, Feeney DS, Ďugová O, Šír M, Tesař M. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia (Section botany). 2007;62:537-541.
  • [21] Lichner L, Orfánus T, Nováková K, Šír M, Tesař M. The impact of vegetation on hydraulic conductivity of sandy soil. Soil & Water Res. 2007;2:59-66.
  • [22] Zhang R. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci Soc Am J. 1997;22:621-626. DOI: 10.2136/sssaj1997.03615995006100040005x.
  • [23] Schimel JP, Bennett J. Nitrogen mineralization: challenges of a changing paradigm. Ecology. 2004;85:591-602.
  • [24] Weber J, Karcyewska A, Drozd J, Licznar M, Jamroz E, Kocowicz A. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste compost. Soil Biol Biochem. 2007;39:1294-1302. DOI: 10.1016/j.soilbio.2006.12.005.
  • [25] Wen-Zhi Z, Chi X, Jing-Wei W, Jie-Sheng H, Tao M. Effect of salinity on soil respiration and nitrogen dynamics. Ecol Chem Eng S. 2013;20(3):519-530. DOI: 10.2478/eces-2013-0039.
  • [26] Silva RG, Jorgensen EE, Holub SM, Gonsoulin ME. Relationships between culturable soil microbial populations and gross nitrogen transformation processes in a clay loam soil across ecosystems. Nutr Cycl Agroecos. 2005;71(3):259-270. DOI: 10.1007/s10705-004-6378-y.
  • [27] Muller C, Abbasi MK, Kammann C, Clough TJ, Sherlock RR, Stevens RJ, et al. Soil respiratory quotient determined via barometric process separation combined with nitrogen-15 labeling. Soil Sci Soc Am J. 2004;68(5):1610-1615.
  • [28] Borken W, Muhs A, Beese F. Aplication of compost in spruce forest: effect on soil respiration, basal respiration and microbial biomass. Forest Ecol Manag. 2002;159: 49-58. DOI: 10.1016/S0378-1127(01)00709-5.
  • [29] Bloem J, Hopkins DW, Benedetti A. Microbiological Methods for Assessing Soil Quality. Wallingford: CABI Publishing; 2006.
  • [30] Aslam DN, Horwath W, Vander Gheynst JS. Comparison of several maturity indicators for estimating phytotoxicity in compost-amended soil. Waste Manage. 2008;28:2070-2076. DOI: 10.1016/j.wasman.2007.08.026.
  • [31] Tiquia SM. Reduction of compost phytotoxicity during the process of decomposition. Chemosphere. 2010;79:506-512. DOI:10.1016/j.chemosphere.2010.02.040.
  • [32] Himanen M, Hänninen K. Composting of bio-waste, aerobic and anaerobic sludges - effect of feedstock on the process and quality of compost. Biores Technol. 2011;102:2842-2852. DOI: 10.1016/j.biortech.2010.10.059.
  • [33] Elbl J, Plošek L, Záhora J, Kintl A, Stroblová M. Effect of increased doses of compost to prepare reclamation substrate on soil respiration and content of mineral nitrogen in the soil. Ad Alta. 2013;3:88-91.
  • [34] Walker DJ, Bernal MP. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Biores Technol. 2008;99:396-403. DOI: 10.1016/j.biortech.2006.12.006.
  • [35] Lakhdar A, Rabhi M, Ghaya T, Montemurro F, Jedidi N, Abdelly Ch. Effectiveness of compost use in salt-affected soil. J Hazardous Mater. 2009;171:29-37. DOI: 10.1016/j.jhazmat.2009.05.132.
  • [36] Schaumann GE, Braun B, Kirchner D, Rotard W, Szewzyk U, Grohmann E. Influence of biofilms on the water repellency of urban soil samples. Hydrological Processes. 2007;21:2276-2284. DOI: 0.1002/hyp.6746.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-309075bb-d886-4098-945c-8c0c279fad96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.