Identyfikatory
DOI
Warianty tytułu
Wykorzystanie danych teledetekcyjnych do identyfikacji złóż żelaza z Landsat ETM+, Kırşehir, Turcja
Języki publikacji
Abstrakty
Image processing techniques (band rationing, color composite, Principal Component Analyses) are widely used by many researchers to describe various mines and minerals. The primary aim of this study is to use remote sensing data to identify iron deposits and gossans located in Kaman, Kırşehir region in the central part of Anatolia, Turkey. Capability of image processing techniques is proved to be highly useful to detect iron and gossan zones. Landsat ETM+ was used to create remote sensing images with the purpose of enhancing iron and gossan detection by applying ArcMap image processing techniques. The methods used for mapping iron and gossan area are 3/1 band rationing, 3/5 : 1/3 : 5/7 color composite, third PC and PC4 : PC3 : PC2 as RG B which obtained result from Standard Principal Component Analysis and third PC which obtained result from Developed Selected Principal Component Analyses (Crosta Technique), respectively. Iron-rich or gossan zones were mapped through classification technique applied to obtained images. Iron and gossan content maps were designed as final products. These data were confirmed by field observations. It was observed that iron rich and gossan zones could be detected through remote sensing techniques to a great extent. This study shows that remote sensing techniques offer significant advantages to detect iron rich and gossan zones. It is necessary to confirm the iron deposites and gossan zones that have been detected for the time being through field observations.
Głównym celem tego artykułu jest wykorzystanie danych teledetekcyjnych do identyfikacji złóż żelaza i gossan (rdzawe tlenkowe i wodorotlenkowe minerały żelaza i manganu, które występują nad złożem rudy) znajdujących się w Kaman, w regionie Kırşehir, w centralnej części Anatolii, w Turcji. Udowodniono, że możliwości przetwarzania obrazów są bardzo użyteczne w wykrywaniu stref żelaza i gossan. Landsat ETM+ został użyty do stworzenia obrazów teledetekcyjnych w celu poprawy wykrywania złóż żelaza i gossan poprzez zastosowanie ArcMap technik przetwarzania obrazu. Metody mapowania złóż żelaza i gossan stosują proporcje pasma 3/1, złożoność koloru 3/5: 1/3: 5/7, trzeci główny składnik PC (Principal Component) uzyskany w wyniku Developed Selected PCA (Crosta Technique) i proporcje PC4: PC3: PC2 jako RG B uzyskane w wyniku standardowej analizy głównych składowych PCA (Principal Component Analysis). Strefy bogate w żelazo lub strefy gossan zostały odwzorowane za pomocą techniki klasyfikacji zastosowanej do uzyskanych obrazów. Mapy zawartości żelaza i gossan zaprojektowano jako produkty końcowe. Dane te zostały potwierdzone w obserwacjach terenowych. Zaobserwowano, że strefy bogate w żelazo i strefy gossan mogą być w dużym stopniu wykrywane za pomocą technik teledetekcji. Badanie to pokazuje, że techniki teledetekcji dają znaczne korzyści w wykrywaniu stref bogatych w żelazo i gossan; jednak koniecznie należy potwierdzić wykryte złoża żelaza za pomocą obserwacji terenowych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
23--36
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Ahi Evran University, Engineering and Architecture Faculty, Geology Engineering Department, Kırşehir, Turkey
autor
- Ahi Evran University, Kaman Vocational High School, Map and Cadastre Program, Kırşehir, Turkey
Bibliografia
- [1] Abrams et al. 1983 – Abrams, M.J., Brown, D., Lepley, L. and Sadowski, R. 1983. Remote sensing for porphyry copper deposits in Southern Arizona. Economic Geology 78, pp. 59–604.
- [2] Abrams et al. 1997 – Abrams, M., Kishino, M. and Matsunaga, T. 1997. Future uses of EOS ASTER data for hydrologic applications, ERIM 4th International Conference on Remote Sensing for Marine and Coastal Applications, held in Orlando, Florida.
- [3] Alasta, A.F. 2011. Using remote sensing data to indentify iron composite in central western Libya, International conference on Emerging trends in Computer and Image processing, Bangkok, pp. 56–61.
- [4] Aydal et al. 2007 – Aydal, D., Vural, A., Uslu (Taşdelen), I. and ve Aydal, E.G. 2007. Investigation of Alakeçi-Kisacik (Bayramiç-Balıkesir) Mineralization Zone with Crosta Technique Using Landsat 7 ETM+. Journal of the Faculty of Architecture and Engineering, Selcuk University Vol. 23, Issue 3, pp. 29–40.
- [5] Boztug et al. 2009 – Boztug, D., Güney, Ö., Heizler, M., Jonckheere, R.C., Tichomirowa, M. and Otlu, N. 2009. 207Pb-206Pb, 40Ar-39Ar and fission-track geothermochronology quantifying cooling and exhumation history of the Kaman-Kırsehir region intrusions, Central Anatolia, Turkey. Turkish Journal of Earth Sciences 18(1), pp. 85–108.
- [6] Ciampalini, et al. 2013 – Ciampalini, A., Garfagnoli, F., Antonielli, B., Moretti, S. and Righini, G. 2013. Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arab J Geoscience 6, pp. 4529–4546
- [7] Crippen, R.E. 1989. Selection of Landsat TM band and band-ratio combinations to maximize lithologic information in color composite displays In: Proceedings of the 7th Thematic Conference on remote sensing for exploration geology, Vol. II, Environmental Research Institute of Michigan, Ann Arbor, Mich., pp. 917–921.
- [8] Crosta, A. and Moore, J. McM. 1989. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: a prospecting case history in Greenstone belt terrain [In:] Proceedings of the 7th ERIM Thematic Conference: Remote sensing for exploration geology, pp. 1173–1187.
- [9] Dogan H.M. 2008. Applications of Remote Sensing and Geographic Information Systems to Assess Ferrous Minerals and Iron Oxide of Tokat Province in Turkey. International Journal of Remote Sensing 29(1), pp. 221–233.
- [10] Drury, S.A. 2001. Image Interpretation in Geology, 3. edn. Allen & Unwin, London.
- [11] Ekincioğlu et al. 2014 – Ekincioğlu, G., Başıbüyük, Z., Ekdur, E., Ballı, F. and Kanbir, E.S. 2014. Kırşehir Natural Stone Sector Analysis and Report of Investment Opportunities, 116 p.
- [12] Elsayed K.A. and Albiely A.I. 2008. Ratio image processing techniques: a prospecting tool for mineral deposits, Red Sea Hills, NE Sudan. Int Arch Photogramm Remote Sens Spat Inf Sci 37, pp. 1295–1298.
- [13] Feizi, F. and Mansouri, E. (2013. Introducing the Iron Potential Zones Using Remote Sensing Studies in South of Qom Province, Iran. Open Journal of Geology 3, pp. 278–286.
- [14] Göncüoglu, M.C. and Türeli, K. 1993. Petrology and geodynamic interpretation of plagiogranites from Central Anatolian ophiolites (Aksaray–Turkey), Turkish Journal of Earth Sciences.
- [15] Gupta, Ravi P. 2003. Remote Sensing Geology, second ed. Springer, Berlin, New York. 655 p.
- [16] Kara, H. and Dönmez, M. 1990. 1/100,000 scale Geological Map of Turkey series. Kırşehir-G-17 Sheet MTA Publications Turkey Geological Map Series of the G-17 Sheet.
- [17] Kaufman, H. 1988. Mineral exploration along the Agaba–Levant structure by use of TM-data concepts, processing and results. International Journal of Remote Sensing 9, pp. 1639–1658.
- [18] Loughlin, W.P. 1991. Principal component analysis for alteration mapping. J Photogramm Eng Rem Sens 57, pp. 1163–1169.
- [19] Madani, A.A. 2009. Utilization of Landsat ETM+ Data for Mapping Gossans and Iron Rich Zones Exposed at Bahrah Area, Western Arabian Shield, Saudi Arabia. Earth Science, 20 (1) 35-49.
- [20] Otlu, N. 1998. Petrological Investigation of Plutonic Rocks Between Kortundağ-Baranadağ (D Kaman, Kırşehir). Cumhuriyet University, Institute of Science and Technology, Doctorate Thesis 1998. 164 p.
- [21] Rutz-Armenta, J. R. and Prol-Ledesma, R. M. 1998. Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico. International Journal of Remote Sensing 19, pp. 1981–2000.
- [22] Sabins, F.F. 1999. Remote sensing for mineral exploration. Ore Geol. Rev 14, pp. 157–183.
- [23] Seymen, I. 1981. Stratigraphy and metamorphism of the Kırşehir Massif around Kaman (Kırşehir). Geological Bulletin of Turkey 24/2, pp. 7–14.
- [24] Singh, A. and Harrison A. 1985. Standardized principal components. International Journal of Remote Sensing 6, pp. 883–896.
- [25] Tangestani, M.H. and ve Moore, F. 2000. Iron oxide and hydroxyl enhancement using the Crosta Method: a case study from the Zagros Belt, Fars province, Iran. Communication, JAG 2, pp. 140–146.
- [26] Tangestani, M.H. and ve Moore, F. 2001. Comparison of three principal component analysis techniques to porphyry copper alteration mapping. A case study, Meiduk area, Kerman, Iran. Canadian Journal of Remote Sensing 27, pp. 176–182.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-308db8a1-b07a-402d-9763-2fbee0eac106