PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The diversity and plant species composition of the spontaneous vegetation on coal mine spoil heaps in relation to the area size

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Any newly created area includes human-created habitats such as the mineral material of post-coal mining spoil heaps undergoing natural colonization and ecosystem development during the succession processes of vegetation colonization. The study of the factors that influence the succession dynamics, and the mechanisms behind this, have a long history (including the species-area relationship or Arrhenius equation). Nevertheless, the list of scientific questions is increasing. One of the significant issues in the study of these processes is the relationship between factors influencing the Biodiversity–Ecosystem Functioning (BEF) relationships. The main prerequisite is the relationships between the plant species' assemblage mechanisms including diversity and the variety of assembly rules concerning the environmental abiotic habitat processes and these properties are not straightforward. At the large scale, parameters such as age and area of the colonized sites are considered to be important. These relationships are more complicated in newly established post-mineral excavation habitats where novel ecosystems are developing. Regardless of the degree of disturbances, vegetation re-establishes in such environments, as a result of spontaneous succession, by the colonization and establishment of the best-adapted organisms. In the habitats of post-coal mining spoil heaps with pure oligotrophic mineral conditions, the non-analogous, newly formed composition of flora, fauna, and saprophytes has been stated in many previous field studies. This study aimed to explore the biodiversity versus area size relationships, in particular, it investigated the species composition and diversity found in the development of the spontaneous vegetation formed during primary succession on mineral substrate habitats of postcoal mining spoil heaps of different area sizes. We tested the hypothesis: species diversity of the vegetation patches on coal mine spoil heaps becomes more diverse on larger sites over time. These results indicate that the area size of the spoil heap significantly affects the diversity of the vegetation. Regardless of which of the characteristics of the vegetation type (dominant species) is compared, the vegetation on the heaps differs depending on its area size.
Czasopismo
Rocznik
Strony
68--84
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr., zdj.
Twórcy
  • Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice; Jagiellońska 28, 40-032 Katowice, Poland
autor
  • Technical Institute of Bakrajo, Sulaimani Polytechnic University SPU Qrga Wrme Street-327/76 46001-Sulaymaniyah, Kurdistan Region, Iraq
autor
  • Mineral and Energy Economy Research Institute, Polish Academy of Sciences; J. Wybickiego 7A, 31-261 Kraków, Poland
autor
  • Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice; Jagiellońska 28, 40-032 Katowice, Poland
  • Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice; Jagiellońska 28, 40-032 Katowice, Poland
autor
  • Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice; Jagiellońska 28, 40-032 Katowice, Poland
  • Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice; Jagiellońska 28, 40-032 Katowice, Poland
  • Faculty of Science & Engineering, University of Wolverhampton; Wulfruna Str., Wolverhampton WV1 1LY, United Kingdom
  • KOMAG Institute of Mining Technology, Pszczyńska 37, 44-101 Gliwice, Poland
Bibliografia
  • [1] Rahmonov O., Oleś W.: Vegetation succession over an area of a medieval ecological disaster. The case of the Błędów Desert, Poland. Erdkunde 2010. 64(3), pp. 241–255. doi 10.3112/erdkunde.2010.03.03
  • [2] Meiners S.J., Cadotte M.W., Fridley J.D., Pickett S.T.A., Walker L.R.: Is successional research nearing its climax? New approaches for understanding dynamic communities. Funct. Ecol. 2015. 29(2), pp. 154–164. doi 10.1111/1365-2435.12391
  • [3] Bierza W., Bierza K., Trzebny A., Greń I., Dabert M., Ciepał R., Trocha L.K.: The communities of ectomycorrhizal fungal species associated with Betula pendula Roth and Pinus sylvestris L. growing in heavy-metal contaminated soils. Plant Soil 2020. 457, pp. 321–338. doi 10.1007/s11104-020-04737-4
  • [4] Prach K., Walker L.R.: Comparative plant succession among terrestrial biomes of the world. Cambridge: Cambridge University Press 2020. ISBN 9781108561167
  • [5] Naeem S., Bunker D.E., Hector A., Loreau M., Perrings C.: Biodiversity, Ecosystem Functioning, and Human Wellbeing An Ecological and Economic Perspective. Oxford: Oxford University Press 2009. ISBN 9780191720345
  • [6] Reiss J., Bridle J.R., Montoya J.M., Woodward, G.: Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol. 2009. 24(9), pp. 505–514. doi 10.1016/j.tree.2009.03.018
  • [7] Cardinale B.J., Duffy J.E., Gonzalez A., Hooper D.U., Perrings C., Venail P., Narwani A., Mace G.M., Tilman D., Wardle D.A., Kinzig A.P., Daily G.C., Loreau M., Grace J.B., Larigauderie A., Srivastava D.S., Naeem S.: Biodiversity loss and its impact on humanity. Nature 2012. 486(7401), pp. 59–67. doi 10.1038/nature11148
  • [8] Tilman D., Isbell F., Cowles J.M.: Biodiversity and Ecosystem Functioning. Annu. Rev. Ecol. Evol. S. 2014. 45, pp.471–493. doi 10.1146/annurev-ecolsys-120213-091917
  • [9] Grace J.B., Anderson T.M., Seabloom E.W., Borer E.T., Adler P.B., Harpole W.S., Hautier Y., Hillebrand H., Lind E.M., Pärtel M., Bakker J.D., Buckley Y.M., Crawley M.J., Damschen E.I., Davies K.F., Fay P.A., Firn J., Gruner D.S., Hector A., Knops J.M.H., MacDougall A.S., Melbourne B.A., Morgan J.W., Orrock J.L., Prober S.M., Smith M.D.: Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 2016. 529(7586), pp. 390–393. doi 10.1038/nature16524
  • [10] Van der Putten W.H., Bardgett R.D., Bever J.D., Bezemer T.M., Casper B.B., Fukami T., Kardol P., Klironomos J.N., Kulmatiski A., Schweitzer J.A., Suding K.N., Van de Voorde T.F.J., Wardle D.A.: Plant–soil feedbacks: the past, the present and future challenges. J. Ecol. 2013. 101(2), pp. 265–276. doi 10.1111/1365-2745.12054
  • [11] Alberti M., Marzluff J.M., Shulenberger E., Bradley G., Ryan C., Zumbrunnen C.: Integrating Humans into Ecology: Opportunities and Challenges for Studying Urban Ecosystems. BioScience 2003. 53(12), pp. 1169–1179. doi 10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2
  • [12] MEA—Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute. Washington, DC. 2005 https://www.millenniumassessment.org/documents/document.354.aspx.pdf [accessed: 09.03.2023]
  • [13] Walker L.R.: The Biology of Disturbed Habitats. Oxford: Oxford University Press 2012. eBook ISBN 9780199575299
  • [14] Milgrom T.: Environmental aspects of rehabilitating abandoned quarries: Israel as a case study. Landscape Urban. Plan. 2008. 87(3), pp. 172–179. doi 10.1016/j.landurbplan.2008.06.007
  • [15] Woźniak G., Chmura D., Błońska A., Tokarska-Guzik B., Sierka E.: Applicability of functional groups concept in analysis of spatiotemporal vegetation changes on man made habitats. Pol. J. Environ. Stud. 2011. 20, pp. 623–631. ISSN 1230-1485
  • [16] Woźniak G., Markowicz A., Borymski S., Piotrowska-Seget Z., Chmura D., Besenyei L.: The relationship between successional vascular plant assemblages and associated microbial communities on coal mine spoil heaps. Community Ecol. 2015. 16(1), pp. 23–32. doi 10.1556/168.2015.16.1.3
  • [17] Woźniak G., Sierka E., Wheeler A.: Urban and Industrial Habitats: How Important They Are for Ecosystem Services. In: Ecosystem Services and Global Ecology. Hufnagel L.(Ed.) IntechOpen 2018. pp. 169–194. doi 10.5772/intechopen.75723
  • [18] Woźniak G., Dyderski M.K., Kompała-Bąba A., Jagodziński A.M., Pasierbiński A., Błońska A., Bierza W., Magurno F., Sierka E.: Use of Remote Sensing to track post-industrial vegetation development. Land Degrad. Dev. 2020. 32(3), pp. 1426–1439. doi 10.1002/ldr.3789
  • [19] Horodecki P., Jagodziński A.M.: Tree species effects on litter decomposition in pure stands on afforested post-mining sites. Forest Ecol. Manag. 2017. 406, pp. 1–11. doi 10.1016/j.foreco.2017.09.059
  • [20] Frouz J., Moradi J., Püschel D., Rydlová J.: Earthworms affect growth and competition between ectomycorrhizal and arbuscular mycorrhizal plants. Ecosphere 2019. 10(5), e02736. doi 10.1002/ecs2.2736
  • [21] Frouz J.: The effect of litter type and macrofauna community on litter decomposition and organic matter accumulation in post-mining sites. Biologia 2008. 63(2), pp. 249–253. doi 10.2478/s11756-008-0031-1
  • [22] Tropek R., Kadlec T., Hejda M., Kocarek P., Skuhrovec J., Malenovsky I., Vodka S., Spitzer L., Banar P., Konvicka M.: Technical reclamations are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps. Ecol. Eng. 2012. 43, pp. 13–18. doi 10.1016/j.ecoleng.2011.10.010
  • [23] Błońska A., Kompała-Bąba A., Sierka E., Besenyei L., Magurno F., Frydecka K., Bierza W., Woźniak, G.: Impact of selected plant species on enzymatic activity of soil substratum on post-mining heaps. Journal of Ecological Engineering 2019a. 20, pp. 138–144. doi 10.12911/22998993/93867
  • [24] Błońska A., Kompała-Bąba A., Sierka E., Bierza W., Magurno F., Besenyei L., Ryś K., Woźniak G.: Diversity of vegetation dominated by selected grass species on coal-mine spoil heaps in terms of reclamation of post-industrial areas. Journal of Ecological Engineering 2019b. 20, pp. 209–217. doi 10.12911/22998993/93870
  • [25] Hobbs R.J., Arico S., Aronson J., Baron J.S., Bridgewater P., Cramer V.A., Epstein P.R., Ewel J.J., Klink C.A., Lugo A.E., Norton D., Ojima D., Richardson D.M., Sanderson E.W., Valladares F., Vilà M., Zamora R., Zobel M.: Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecol. Biogeogr. 2006. 15(1), pp. 1–7. doi 10.1111/j.1466-822X.2006.00212.x
  • [26] Hobbs R.J., Higgs E.S., Hall C.M.: Defining novel ecosystems. In: Novel Ecosystems: Intervening in the New Ecological World Order. New Jersey: John Wiley & Sons, Ltd 2013. pp. 58–60. ISBN 9781118354186
  • [27] Milewska-Hendel A., Chmura D., Wyrwał K., Kurczyńska E.U., Kompała-Bąba A., Jagodziński A.M., Woźniak G.: Cell wall epitopes in grasses of different novel ecosystem habitats on post-industrial sites. Land Degrad. Dev. 2020. 32(4), pp. 1680–1694. doi 10.1002/ldr.3786
  • [28] Chmura D., Rozkowski Z., Guzicka M., Dorobek K.: Variation in aboveground biomass carbon accumulation in Scots pine seed orchards progeny. Ann. For Res. 2022. 64(2), pp. 139–148. doi 10.15287/afr.2021.2062
  • [29] Dyczko A., Ryś K., Radosz Ł., Woźniak G. Current Reclamation Practices and Their Successfulness. In: Green Scenarios: Mining Industry Responses to Environmental Challenges of the Anthropocene Epoch – International Mining Forum, Dyczko, A., Jagodziński, A.M., Woźniak, G. Eds.; CRC Press Balkema, Taylor & Francis Group: United States, 2022; 12 pp 375–385. ISBN 9781003271604
  • [30] Rawlik M., Kasprowicz M., Jagodzinski A.M.: Differentiation of herb layer vascular flora in reclaimed areas depends on the species composition of forest stands. Forest Ecol. Manag. 2018a. 409, pp. 541–551. doi 10.1016/j.foreco.2017.11.055
  • [31] Rawlik M., Kasprowicz M., Jagodzinski A.M., Kaźmierowski C., Łukowiak R., Grzebisz W.: Canopy tree species determine herb layer biomass and species composition on a reclaimed mine spoil heap. Sci. Total. Environ. 2018b. 635, pp. 1205–1214. doi 10.1016/j.scitotenv.2018.04.133
  • [32] Kompała-Bąba A., Sierka E., Dyderski M.K., Bierza W., Magurno F., Besenyei L., Błońska A., Ryś K., Jagodziński A.M., Woźniak G.: Do the dominant plant species impact the substrate and vegetation composition of post-coal mining spoil heaps? Ecol. Eng. 2020. 143, 105685, pp. 1–8. doi 10.1016/j.ecoleng.2019.105685
  • [33] Woźniak G.: Zróżnicowanie Roślinności na Zwałach Pogórniczych Górnego Śląska. Kraków. Instytut Botaniki im. W. Szafera PAN 2010. ISBN 9788389648884. [In Polish]
  • [34] Arrhenius O.: Species and area. J. Ecol. 1921. 9(1), pp. 95–99. doi 10.2307/2255763
  • [35] Cabała J., Teper E., Teper L., Małkowski E., Rostański A.: Mineral composition in rhizosphere of plants grown in the vicinity of a Zn-Pb ore flotation tailings pond. Acta Biol. Cracov. Bot. 2004. 46, pp. 65–74
  • [36] Woźniak G. Primary succession on the sedimentation pools of coal mine. In: Synanthropization of Plant Cover in New Polish Research; Faliński, J.B., Adamowski, W., Jackowiak, B. (Eds.): Phytocoenosis 10 (N.S.) Supplementum Cartographiae Geobotanicae 1998. 10(9), pp. 189–198
  • [37] Box J.: Nature Conservation and Post-Industrial Landscapes. Industrial Archaeology Review 1999. 21(2), pp. 137–146. doi 10.1179/iar.1999.21.2.137
  • [38] Bradshaw A.: The use of natural processes in reclamation – Advantages and difficulties. Landscape Urban Plan. 2000. 51(2–4), pp 89–100. doi 10.1016/S0169-2046(00)00099-2
  • [39] Kompała-Bąba A., Bąba W.: The spontaneous succession in a sand-pit – the role of life history traits and species habitat preferences. Pol. J. Ecol. 2013. 61(1), pp. 13–22
  • [40] Jagodziński A.M., Woźniak, G.: Environmental Knowledge and Understanding: an Important and Necessary Aspect of Corporate Social Responsibility. In Green Scenarios: Mining Industry Responses to Environmental Challenges of the Anthropocene Epoch – International Mining Forum 2021; Dyczko, A., Jagodziński, A.M., Woźniak, G. Eds.; CRC Press Balkema, Taylor & Francis Group: United States, 2022 pp. 317–325. ISBN 9781003271604
  • [41] Grime J.P.: Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 1998. 86(6), pp. 902–910. doi 10.1046/j.1365-2745.1998.00306.x
  • [42] Oberdorfer E., Müller T., Korneck D., Lippert W., Markgraf-Dannenberg I., Patzke E., Weber H.E.: Pflanzensoziologische Exkursionsflora. Stuttgart: Ulmer 1990. ISBN 9783800131310 [In German] [43] Zarzycki K., Trzcińska-Tacik H., Różański W., Szeląg Z., Wołek J., Korzeniak U.: Ecological Indicator Values of Vascular Plants of Poland. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences 2002
  • [44] Preston F.W.: The Canonical Distribution of Commonness and Rarity: Part I. Spring 1962. 43(2), pp. 185–215. doi:10.2307/1931976
  • [45] Connor E.F., McCoy E.D.: The statistics and biology of the species-area relationship. Am. Nat. 1979. 113(6), pp. 791–833. doi 10.1086/283438
  • [46] Macarthur R.H., Wilson E.O.: The theory of island biogeography. Princeton: Princeton University Press 1967. ISBN 9780691088365
  • [47] Hubbell S.P.: The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Princeton University Press 2001. ISBN 9780691021287
  • [48] Rosenzweig M.L.: Species diversity in space and time. New York: Cambridge University Press 1995. ISBN 9780511623387
  • [49] Brose U., Williams R.J., Martinez N.D.: Allometric scaling enhances stability in complex food webs. Ecol. Lett. 2006. 9(11), pp. 1228–1236. doi 10.1111/j.1461-0248.2006.00978.x
  • [50] Würtz P., Annila A.: Roots of diversity relations. J Biophys. 2008. 2008(1267):654672, pp. 1–8. doi 10.1155/2008/654672
  • [51] Matthews T.J., Cottee-Jones H.E., Whittaker R.J.: Habitat fragmentation and the species–area relationship: A focus on total species richness obscures the impact of habitat loss on habitat specialists. Diversity Distrib. 2014. 20, pp. 1136–1146. doi 10.1111/ddi.12227
  • [52] Drakare S., Lennon J.J., Hillebrand H.: The imprint of the geographical, evolutionary and ecological context on species – area relationship. Ecol. Lett. 2006. 9(2), pp. 215–227. doi 10.1111/j.1461-0248.2005.00848.x
  • [53] Mouillot D., Lepretre A.: Introduction of Relative Abundance Distribution (RAD) Indices, Estimated from the Rank-Frequency Diagrams (RFD), to Assess Changes in Community Diversity. Environ. Monit. Asses. 2000. 63, pp 279–295. doi 10.1023/A:1006297211561
  • [54] Scheiner S.M.: Six types of species-area curves Six types of species‐area curves. Global. Ecol. Biogeogr. 2003. 12(6), pp. 441-447. doi 10.1046/j.1466-822X.2003.00061.x
  • [55] Barbour M.G., Keeler-Wolf T., Allan A., Schoenherr A.A.: Terrestrial Vegetation of California 3th edition. California: The University of California Press 2007. EISBN 978-0-520-93336-1
  • [56] Williamson M., Gaston K.J., Lonsdale W.M.: The species-area relationship does not have an asymptot! J. Biogeogr. 2001. 28(7), pp. 827–830. doi 10.1046/j.1365-2699.2001.00603.x93336-1
  • [57] Gleason H.A.: On the relation between species and area. Ecology 1922. 3(2), pp. 158–162. doi 10.2307/1929150
  • [58] Pueyo S.: Self-similarity species – area relationships and in species abundance distribution. Oikos 2006. 112(1), pp. 156–162. doi 10.1111/j.0030-1299.2006.14184.x
  • [59] Dzwonko Z., Loster S.: Species richness and seed dispersal to secondary woods in southern Poland. J. Biogeogr. 1992. 19(2), pp. 195–204. doi 10.2307/2845505
  • [60] Zobel K.: On the species-pool hypothesis and on the Quasi-neutral concept of plant community diversity. Folia Geobot. 2001. 36, pp. 3–8
  • [61] Amarasekare P., Nisbet R.M.: Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am. Nat. 2001. 158(6), pp. 572–584. doi 10.1086/323586
  • [62] Mouquet N., Loreau M.: Coexistence in meta-communities: the regional similarity hypothesis. Am. Nat. 2002. 159(4), pp. 420–426. doi 10.1086/338996
  • [63] Leibold M.A., Holyoak M., Mouquet N., Amarasekare P., Chase J.M., Hoopes M.F., Holt R.D., Shurin J.B., Law R., Tilman D., Loreau M., Gonzalez A.: The metacommunity concept: a framework for multiscale community ecology. Ecol. Lett. 2004. 7(7), pp. 601–613. doi 10.1111/j.1461-0248.2004.00608.x
  • [64] Cadotte M.W., Fukami T.: Dispersal, spatial scale, and species diversity in a hierarchically structured experimental landscape. Ecol. Lett. 2005. 8(5), pp. 548–557. doi 10.1111/j.1461-0248.2005.00750.x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-308a8603-aaad-4562-a923-72a7083bfd85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.