PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the Teager-Kaiser energy operator in diagnostics of a hydrodynamic bearing

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie operatora energetycznego Teagera-Kaisera w diagnostyce łożyska hydrodynamicznego
Języki publikacji
EN PL
Abstrakty
EN
The paper presents the use of the Teager-Kaiser energy operator (TKEO) to evaluate the state of rotor unbalance. The method was developed in 1990 by Kaiser and involves a simple calculation of signal energy. It has been used before in diagnostics, e.g. during the evaluation of instability of hydrodynamic bearings and as a diagnostic symptom of gearbox damage. This paper is the first to present the use of the Teager-Kaiser method to evaluate the rotor unbalance in hydrodynamic bearings.
PL
W artykule przedstawiono zastosowanie operatora energetycznego Teagera-Kaisera (TKEO) do oceny stanu niewyważenia wirnika. Metoda ta opracowana została w 1990 roku przez Kaisera i polega na prostym obliczeniu energii sygnału. Wykorzystywana była już wcześniej w diagnostyce np. przy ocenie niestabilności łożysk hydrodynamicznych oraz jako symptom diagnostyczny uszkodzenia przekładni. W artykule tym po raz pierwszy przedstawiono możliwość wykorzystania metody Teagera-Kaisera do oceny niewyważenia wirnika pracującego na łożyskach hydrodynamicznych.
Rocznik
Strony
757--765
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • AGH University of Science And Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Turbine Dynamics and Diagnostics, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • 1. Al-Shudeifat M A, Al Hosani H, Saeed A S, Balawi S. Effect of Unbalance Force Vector Orientation on the Whirl Response of Cracked Rotors. Journal of Vibration and Acoustics, Transactions of the ASME 2019; 141(2): 1-10, https://doi.org/10.1115/1.4041462.
  • 2. Amroune S, Belaadi A, Menasri N et al. New approach for computer-aided static balancing of turbines rotors. Diagnostyka 2019; 20(4): 95-101, https://doi.org/10.29354/diag/114621.
  • 3. Antoniadou I, Manson G, Staszewski W J et al. A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions. Mechanical Systems and Signal Processing 2015; 64-65: 188-216, https://doi.org/10.1016/j.ymssp.2015.03.003.
  • 4. Artyunin A I, Sumenkov O Y. Simulation of the Automatic Balancing Process of A Rotor, Rigidly Fixed in the Housing on Elastic Supports 2019; 188: 10-14, https://doi.org/10.2991/aviaent-19.2019.2.
  • 5. Blaut J, Korbiel T, Batko W. Application of the Teager-Kaiser energy operator to detect instability of a plain bearing. Diagnostyka 2016; 17(4): 99-105.
  • 6. Blaut J, Rumin R, Cieślik J et al. Application of TKEO in the process of automatic balancing of the rotor. AUTOBUSY - Technika, Eksploatacja, Systemy Transportowe 2019; 20(1-2): 161-166, https://doi.org/10.24136/atest.2019.028.
  • 7. Burdzik R, Konieczny Ł, Warczek J, Cioch W. Adapted linear decimation procedures for TFR analysis of non-stationary vibration signals of vehicle suspensions. Mechanics Research Communications 2017; 82: 29-35, https://doi.org/10.1016/j.mechrescom.2016.11.002.
  • 8. Chudzik A, Warda B. Fatigue life prediction of a radial cylindrical roller bearing subjected to a combined load using FEM. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22(2): 212-220, https://doi.org/10.17531/ein.2020.2.4.
  • 9. Czmochowski J, Moczko P, Odyjas P, Pietrusiak D. Tests of rotary machines vibrations in steady and unsteady states on the basis of large diameter centrifugal fans. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2014; 16(2): 211-216.
  • 10. Dąbrowski Z, Dziurd J. Increase of non-linear disturbances during machines operations. Journal of Machine Construction and Maintenance 2017; 1: 37-44.
  • 11. Gałęzia A, Gumiński R, Jasiński M, Mączak J. Application of energy operators for detection of failures in gearboxes. Mechanics Research Communications 2017; 82: 3-8, https://doi.org/10.1016/j.mechrescom.2017.02.008.
  • 12. Heindel S, Becker F, Rinderknecht S. Unbalance and resonance elimination with active bearings on a Jeffcott Rotor. Mechanical Systems and Signal Processing 2017; 85: 339-353, https://doi.org/10.1016/j.ymssp.2016.08.016.
  • 13. Heindel S, Müller P C, Rinderknecht S. Unbalance and resonance elimination with active bearings on general rotors. Journal of Sound and Vibration 2018; 431: 422-440, https://doi.org/10.1016/j.jsv.2017.07.048.
  • 14. Henríquez Rodríguez P, White P R, Alonso J B et al. Application of Teager-Kaiser energy operator to the analysis of degradation of a helicopter input pinion. The International Conference Surveillance 6, 2011.
  • 15. Hryniewicz O. Theoretical advances and applications of fuzzy logic and soft computing. Advances in soft computing. In O. C, P. M, O.M. R et al. (eds): Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, Berlin, Heidelberg, Springer Berlin Heidelberg: 2007; 42: 573-582.
  • 16. Ibn Shamsah S M, Sinha J K. Rotor unbalance estimation with reduced number of sensors. Machines 2016, https://doi.org/10.3390/machines4040019.
  • 17. Kaiser J F F. On a simple algorithm to calculate the "energy" of a signal. International Conference on Acoustics, Speech, and Signal Processing, IEEE: 1990; 407(1): 381-384, https://doi.org/10.1109/ICASSP.1990.115702.
  • 18. Knotek J, Novotný P, Maršálek O et al. The Influence of Rotor Unbalance on Turbocharger Rotor Dynamics. Journal of Middle European Construction and Design of Cars 2016; 13(3): 8-13, https://doi.org/10.1515/mecdc-2015-0010.
  • 19. Kosmol J. An extended model of angular bearing - influence of fitting and pre-deformation. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(3): 493-500, https://doi.org/10.17531/ein.2019.3.16.
  • 20. Kozłowski E, Mazurkiewicz D, Żabiński T et al. Assessment model of cutting tool condition for real-time supervision system. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(4): 679-685, https://doi.org/10.17531/ein.2019.4.18.
  • 21. Pawlik P. Single-number statistical parameters in the assessment of the technical condition of machines operating under variable load. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(1): 164-169, https://doi.org/10.17531/ein.2019.1.19.
  • 22. Plantegenet T, Arghir M, Jolly P. Experimental analysis of the thermal unbalance effect of a flexible rotor supported by a flexure pivot tilting pad bearing. Mechanical Systems and Signal Processing 2020; 145: 106953, https://doi.org/10.1016/j.ymssp.2020.106953.
  • 23. Rumin R. Mathematical models of balancing rotors based on mathematical and physical relationships. Advances in Science and Technology 2011; 8(8): 226-232.
  • 24. Rumin R, Blaut J, Cieślik J. Application of Hurst exponent to the analysis of the rotor balancing device. Polish Congress of Mechanics, International conference on Computer Methods in Mechanics 2019.
  • 25. Singh A, Gupta T C. Effect of rotating unbalance and engine excitations on the nonlinear dynamic response of turbocharger flexible rotor system supported on floating ring bearings. Archive of Applied Mechanics 2020, https://doi.org/10.1007/s00419-020-01660-z.
  • 26. Spagnol J P, Wu H, Xiao K. Dynamic response of a cracked rotor with an unbalanced influenced breathing mechanism. Journal of Mechanical Science and Technology 2018; 32(1): 57-68, https://doi.org/10.1007/s12206-017-1207-9.
  • 27. Wang A, Yao W, He K et al. Analytical modelling and numerical experiment for simultaneous identification of unbalance and rolling-bearing coefficients of the continuous single-disc and single-span rotor-bearing system with Rayleigh beam model. Mechanical Systems and Signal Processing 2019; 116: 322-346, https://doi.org/10.1016/j.ymssp.2018.06.039.
  • 28. Zhang C, Zhang Y. Common cause and load-sharing failures-based reliability analysis for parallel systems. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 22(1): 26-34, https://doi.org/10.17531/ein.2020.1.4.
  • 29. Zhao B, Yuan Q, Li P. Improvement of the vibration performance of rod-fastened rotor by multioptimization on the distribution of original bending and unbalance. Journal of Mechanical Science and Technology 2020; 34(1): 83-95, https://doi.org/10.1007/s12206-019-1207-z.
  • 30. Zou D, Zhao H, Liu G et al. Application of augmented Kalman filter to identify unbalance load of rotor-bearing system: Theory and experiment. Journal of Sound and Vibration 2019, https://doi.org/10.1016/j.jsv.2019.114972.
  • 31. ISO 1940-1 Mechanical vibration - balance quality requirements for rotors in a constant (rigid) state. Part 1: Specification and verification of balance tolerances. 2003.
  • 32. ISO 5343:1983 Criteria for evaluating flexible rotor balance. 1983.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-308a4649-e31a-4b34-b26c-6e7bcd1b57ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.