PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanofiltration usage for fluoride removal in the sodium chloride presence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fluorine and sodium chloride are common elements present in the water environment. According to WHO guidelines fluoride content in water cannot be not higher than 1.5 mF-/dm3. Elevated fluoride content was observed all over the world and it leads to many health issues. It can be removed with the usage of various methods (ion exchange, membrane processes, adsorption, precipitation). In this paper fluoride removal with nanofiltration usage was described. Tests were performed with the application of Amicon 86400 filtration cells. Two types of commercial nanofiltration membranes NP010P and NP030P (Microdyn Nadir) were used. Transmembrane pressure was established as 0.3 MPa. For lower fluoride concentrations (5 mgF-/dm3) NF process allowed to decrease fluoride content under level 1.5 mgF-/dm3. Removal efficiency decreased with increasing fluoride content. Membrane NP030P showed better separation properties. Sodium chloride influenced removal efficiency as well as fluoride adsorption on/in membranes during the process. According to obtained data, better hydraulic properties exhibited membrane NP010P. For both membranes decrease in permeate flux in comparison to pure water was noticed what was observed. Relative permeability was lowered even to 0.32.
Rocznik
Strony
98--108
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Wrocław University of Science and Technology,Wrocław, Poland
Bibliografia
  • 1. Akuno, M.H., Nocella, G., Milia, E.P. & Gutierrez, L. (2019). Factors influencing the relationship between fluoride in drinking water and dental fluorosis: A ten-year systematic review and meta-analysis. Journal of Water and Health, 17(6), pp. 845-862. DOI: 10.2166/wh.2019.300
  • 2. Ali, I., Alothman, Z.A. & Sanagi, M.M. (2015). Green Synthesis of Iron Nano-Impregnated Adsorbent for Fast Removal of Fluoride from Water. Journal of Molecular Liquids, 211, pp. 457-465. DOI: 10.1016/j.molliq.2015.07.034
  • 3. Ayala, L.I. M., Paquet, M., Janowska, K., Jamard, P., Quist-Jensen, C.A., Bosio, G.N., Mártire, D.O., Fabbri, D. & Boffa, V. (2018). Water Defluoridation: Nanofiltration vs Membrane Distillation. Industrial and Engineering Chemistry Research, 57(43), pp. 14740-14748. DOI: 10.1021/acs.iecr.8b03620
  • 4. Banasiak, L.J. & Schäfer, A. I. (2009). Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. Journal of Membrane Science, 334(1-2), pp. 101-109. DOI: 10.1016/j.memsci.2009.02.020
  • 5. Bannoud, A.H. & Darwich, Y. (2007). Elimination des ions fluorures et manganèses contenus dans les eaux par nanofiltration. Desalination, 206(1-3), pp. 449-456. DOI: 10.1016/j.desal.2006.02.071
  • 6. Bhatnagar, A., Kumar, E. & Sillanpää, M. (2011). Fluoride removal from water by adsorption - A review. Chemical Engineering Journal, 171(3), pp. 811-840. DOI: 10.1016/j.cej.2011.05.028
  • 7. Bowen, W.R., Mohammad, A.W. & Hilal, N. (1997). Characterisation of nanofiltration membranes for predictive purposes - Use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science, 126(1), pp. 91-105. DOI: 10.1016/S0376-7388(96)00276-1
  • 8. Carvalho, A.L., Maugeri, F., Silva, V., Hernández, A., Palacio, L. & Pradanos, P. (2011). AFM analysis of the surface of nanoporous membranes: Application to the nanofiltration of potassium clavulanate. Journal of Materials Science, 46(10), pp. 3356-3369. DOI: 10.1007/s10853-010-5224-7
  • 9. Cassano, A., Bentivenga, A., Conidi, C., Galiano, F., Saoncella, O. & Figoli, A. (2019). Membrane-based clarification and fractionation of red wine lees aqueous extracts. Polymers, 11(7), pp. 1-16. DOI: 10.3390/polym11071089
  • 10. Chatterjee, S. & De, S. (2014). Adsorptive removal of fluoride by activated alumina doped cellulose acetate phthalate (CAP) mixed matrix membrane, Sepparation and Purification Technology, 125, pp. 223-238. DOI: 10.1016/j.seppur.2014.01.055
  • 11. Chen, C., Han, B., Li, J., Shang, T., Zou, J. & Jiang, W. (2001). A new model on the diffusion of small molecule penetrants in dense polymer membranes. Journal of Membrane Science, 187(1-2), pp. 109-118. DOI: 10.1016/S0376-7388(00)00689-X
  • 12. Chibani, A., Barhoumi, A., Ncib, S., Bouguerra, W. & Elaloui, E. (2019). Fluoride removal from synthetic groundwater by electrocoagulation process: parameters ad energy evaluation. Desalination and Water Treatment, 157, pp. 100-109. DOI: 10.5004/dwt.2019.24087
  • 13. Damtie, M.M., Woo, Y.C., Kim, B., Hailemariam, R.H., Park, K.D., Shon, H.K., Park, C. & Choi, J.S. (2019). Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. Journal of Environmental Management, 251, pp. 1-24. DOI: 10.1016/j.jenvman.2019.109524
  • 14. Diawara, C.K., Paugam, L., Pontié, M., Schlumpf, J.P., Jaouen, P. & Quéméneur, F. (2005). Influence of chloride, nitrate, and sulphate on the removal of fluoride ions by using nanofiltration membranes. Separation Science and Technology, 40, pp. 3339-3347. DOI: 10.1080/01496390500423706
  • 15. Elimelech, M., Zhu, X., Childress, A.E. & Hong, S. (1997). Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. Journal of Membrane Science, 127(1), pp. 101-109. DOI: 10.1016/S0376-7388(96)00351-1
  • 16. Epsztein, R., Shaulsky, E., Dizge, N., Warsinger, D.M. & Elimelech, M. (2018). Role of ionic charge density in Donnan exclusion of monovalent anions by nanofiltration. Environmental Science and Technology, 52, pp. 4108-4116. DOI: 10.1021/acs.est.7b06400
  • 17. Fierro, D., Boschetti-de-Fierro, A. & Abetz, V. (2012). The solution-diffusion with imperfections model as a method to understand organic solvent nanofiltration of multicomponent systems. Journal of Membrane Science, 413-414, pp. 91-101. DOI: 10.1016/j.memsci.2012.04.027
  • 18. Gomes, A.C., Cabral Goncalves, I. & de Pinho, M.N, The role of adsorption on nanofiltration of azo dyes (2005). Journal of Membrane Science, 255, pp. 157-165. DOI: 10.1016/j.memsci.2005.01.031
  • 19. He, J., Yang, Y., Wu, Z., Xie, C., Zhang, K., Kong, L. & Liu, J. (2020). Review of fluoride removal from water environment by adsorption. Journal of Environmental Chemical Engineering, 8(6), pp. 1-101. DOI: 10.1016/j.jece.2020.104516
  • 20. Hirose, M., Ito, H. & Kamiyama, Y. (1996). Effect of skin layer surface structures on the flux behaviour of RO membranes. Journal of Membrane Science, 121(2), pp. 209-215. DOI: 10.1016/S0376-7388(96)00181-0
  • 21. Hoinkis, J., Valero-Freitag, S., Caporgno, M.P. & Pätzold, C. (2011). Removal of nitrate and fluoride by nanofiltration - A comparative study. Desalination and Water Treatment, 30(1-3), pp. 278-288. DOI: 10.5004/dwt.2011.2103
  • 22. Hong, S.U., Malaisamy, R. & Bruening, M.L. (2007). Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes, Langmuir, 23, 1716-1722. DOI: 10.1021/la061701y
  • 23. Hu, K. & Dickson, J.M. (2006). Nanofiltration membrane performance on fluoride removal from water. Journal of Membrane Science, 279(1-2), pp. 529-538. DOI: 10.1016/j.memsci.2005.12.047
  • 24. Kambarani, M., Bahmanyar, H., Mousavian, M.A. & Mousavi, S.M. (2016). Crossflow filtration of sodium chloride solution by a polymeric nanofilter: Minimization of concentration polarization by a novel backpulsing method. Iranian Journal of Chemistry and Chemical Engineering, 80, pp. 135-141. DOI: 10.30492/IJCCE.2016.23595
  • 25. Klimonda, A. & Kowalska, I. (2019). Application of polymeric membranes for the purification of solutions containing cationic surfactants. Water Science and Technology, 79(7), pp. 1241-1252. DOI: 10.2166/wst.2019.115
  • 26. Kowalik-Klimczak, A., Zalewski, M. & Gierycz, P. (2016). Removal of Cr(III) ions from salt solution by nanofiltration: Experimental and modelling analysis. Polish Journal of Chemical Technology, 18(3), pp. 10-16. DOI: 10.1515/pjct-2016-0042
  • 27. Krieg, H.M., Modise, S.J., Keizer, K. & Neomagus, H.W.J.P. (2004). Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal. Desalination, 171, pp. 205-215. DOI: 10.1016/j.desal.2004.05.005
  • 28. Labarca, F. & Bórquez, R. (2020). Comparative study of nanofiltration and ion exchange for nitrate reduction in the presence of chloride and iron in groundwater. Science of the Total Environment, 723, pp. 1-12. DOI: 10.1016/j.scitotenv.2020.137809
  • 29. Lee, S., Lee, E., Elimelech, M. & Hong, S. (2011). Membrane characterization by dynamic hysteresis: Measurements, mechanisms, and implications for membrane fouling. Journal of Membrane Science, 366, pp. 17-24. DOI: 10.1016/j.memsci.2010.09.024
  • 30. Ma, W.F., Liu, W.J. & Chen, G.W. (2009). Factors influencing the removal of fluoride from groundwater by Nanofiltration. 3rd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2009, pp. 1-5. DOI: 10.1109/ICBBE.2009.5162848
  • 31. Madaeni, S.S. & Salehi, E. (2009). Adsorption of cations on nanofiltration membrane: Separation mechanism, isotherm confirmation and thermodynamic analysis. Chemical Engineering Journal, 150(1), pp. 114-121. DOI: 10.1016/j.cej.2008.12.005
  • 32. Mnif, A., Ali, M.B.S. & Hamrouni, B. (2010). Effect of some physical and chemical parameters on fluoride removal by nanofiltration. Ionics, 16, pp. 245-253. DOI: 10.1007/s11581-009-0368-7
  • 33. Nasr, A.B., Charcosset, C., Amar, R.B. & Walha, K. (2013). Defluoridation of water by nanofiltration. Journal of Fluorine Chemistry, 150, pp. 92-97. DOI: 10.1016/j.jfluchem.2013.01.021
  • 34. Nechifor, G., Pascu, D.E. & Pascu, M. (2013). Study of adsorption kinetics and zeta potential of phosphate and nitrate ions on a cellulosic membrane. Revue Roumaine de Chimie, 58 (7-8), pp. 591-597.
  • 35. Park, N., Cho, J., Hong, S. & Lee, S. (2010). Ion transport characteristics in nanofiltration membranes: Measurements and mechanisms. Journal of Water Supply: Research and Technology - AQUA, 59(2-3), pp. 179-190. DOI: 10.2166/aqua.2010.034
  • 36. Richards, L.A., Vuachère, M. & Schäfer, A.I. (2010). Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination, 261(3), pp. 331-337. DOI: 10.1016/j.desal.2010.06.025
  • 37. Salgado, C., Carmona, F.J., Palacio, L., Hernández, A. & Prádanos, P. (2016). Fouling study of nanofiltration membranes for sugar control in grape must: Analysis of resistances and the role of osmotic pressure. Separation Science and Technology, 51(3), pp. 525-541. DOI: 10.1080/01496395.2015.1094490
  • 38. Shen, J. & Schäfer, A. (2014a). Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere, 117(1), pp. 679-691. DOI: 10.1016/j.chemosphere.2014.09.090
  • 39. Shen, J. & Schäfer, A. (2015). Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis. Science of the Total Environment, 527-528, pp. 520-529. DOI: 10.1016/j.scitotenv.2015.04.037
  • 40. Shu, L., Waite, T. D., Bliss, P. J., Fane, A. & Jegatheesan, V. (2005). Nanofiltration for the possible reuse of water and recovery of sodium chloride salt from textile effluent. Desalination, 172, pp. 235-243. DOI: 10.1016/j.desal.2004.07.037
  • 41. Shurvell, T., Keir, G., Jegatheesan, V., Shu, L. & Farago, L. (2014). Removal of ametryn through nanofiltration and reverse osmosis. Desalination and Water Treatment, 52, pp. 643-649. DOI: 10.1080/19443994.2013.829594
  • 42. Silva, F.C. (2018). Fouling of Nanofiltration Membranes, IntechOpen, London 2018, DOI: 10.5772/intechopen.75353
  • 43. Steele, D. (1966). Group la: the Alkali Metals Li, Na, K, Rb, Cs, Fr, Pergamon, Tallahassee 1966. DOI: 10.1016/b978-0-08-011853-6.50010-2
  • 44. Szmagara, A. & Krzyszczak, A. (2019). Monitoring of fluoride content in bottled mineral and spring waters by ion chromatography. Journal of Geochemical Exploration, 202, pp. 27-34. DOI:10.1016/j.gexplo.2019.03.008
  • 45. Tahaikt, M., El Habbani, R., Ait Haddou, A., Achary, I., Amor, Z., Taky, M., Alami, A., Boughriba, A., Hafsi, M. & Elmidaoui, A. (2007). Fluoride removal from groundwater by nanofiltration. Desalination, 212(1-3), pp. 46-53. DOI: 10.1016/j.desal.2006.10.003
  • 46. Teixeira, M.R., Rosa, M. J. & Nyström, M. (2005). The role of membrane charge on nanofiltration performance. Journal of Membrane Science, 265(1-2), pp. 160-166. DOI: 10.1016/j.memsci.2005.04.046
  • 47. Tsuru, T., Nakao, S.I. & Kimura, S. (1991). Calculation of ion rejection by extended nernst-planck Equation with charged reverse osmosis membranes for single and mixed electrolyte solutions. Journal of Chemical Engineering of Japan, 24(4), pp. 511-517. DOI: 10.1252/jcej.24.511
  • 48. Van der Bruggen, B. & Vandecasteele, C. (2001). Flux decline during nanofiltration of organic components in aqueous solution. Environmental Science Technology, 35, pp. 3535-3540. DOI: 10.1021/es0100064
  • 49. Van Der Bruggen, B., Braeken, L. & Vandecasteele, C. (2002). Flux decline in nanofiltration due to adsorption of organic compounds. Separation and Purification Technology, 29(1), pp. 23-31. DOI: 10.1016/S1383-5866(01)00199-X
  • 50. Vieira, G.S, Moreira, F.K.V., Matsumoto, R.L.S., Michelon, M., Filho, F.M. & Hubinger, M.D. (2018). Influence of nanofiltration membrane features on enrichment of jussara ethanolic extract (Euterpe edulis) in anthocyanins. Journal of Food Engineering, 226, pp. 31-41. DOI: 10.1016/j.jfoodeng.2018.01.013
  • 51. Vinati, A., Mahanty, B. & Behera, S.K. (2015). Clay and clay minerals for fluoride removal from water: A state-of-the-art review. Applied Clay Science, 114, pp. 340-348. DOI: 10.1016/j.clay.2015.06.013
  • 52. Vigneswaran, S. & Kwon, D.-Y. (2015). Effect of ionic strength and permeate flux on membrane fouling: analysis of forces acting on particle deposit and cake formation. Environmental Engineering, 19, pp. 1604-1611. DOI: 10.1007/s12205-014-0079-0
  • 53. Wang, Y., Shu, L., Jegatheesan, V. & Gao, B. (2010). Removal and adsorption of diuron through nanofiltration membrane: The effects of ionic environment and operating pressures. Separation and Purification Technology, 74(2), pp. 236-241. DOI: 10.1016/j.seppur.2010.06.011
  • 54. WHO, Guidelines for Drinking-Water Quality, 2017 (4th ed.), World Health Organization, 763 Geneva
  • 55. Xi, B., Wang, X., Liu, W., Xia, X., Li, D., He, L., Wang, H., Sun, W., Yang, T. & Tao, W. (2014). Fluoride and Arsenic Removal by Nanofiltration Technology from Groundwater in Rural Areas of China: Performances with Membrane Optimization. Separation Science and Technology (Philadelphia), 49, pp. 2642-2649. DOI: 10.1080/01496395.2014.939761
  • 56. Xu, H., Xiao, K., Yu, J., Huang, B., Wang, X., Liang, S., Wei, C., Wen, X. & Huang, X. (2020). A simple method to identify the dominant fouling mechanisms during membrane filtration based on piecewise multiple linear regression. Membranes, 10(8), 1-14. DOI: 10.3390/membranes10080171
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3080d737-9356-4484-9427-ba1d45cd0a99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.