PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative Study on the Mechanical and Corrosion Properties of the ZM20 and ZM21 Alloys after Casting and Rolling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effects of grain refinement and production methods on the corrosion, corrosive wear and mechanical properties of the as-cast and as-rolled Mg-2 wt.% Zn (ZM20) and Mg-2 wt.% Zn-0,51 wt.% Mn (ZM21) alloys were examined by using OM, XRD, SEM, hardness and uniaxial tensile test. Additionally, the potentiodynamic polarization, immersion corrosion test and corrosive wear properties of the ZM20 and ZM21 alloys were compared. According to the XRD results, MgZn and MgZn2 phases were found in the alloys and also MnZn3 phase occurred in the ZM21 alloy with the addition of manganese. Both during solidification forming nucleation points with the added manganese and during rolling the broken secondary phase particles distributed into the matrix prevented grain growth and led to the formation of a more refined structure. The tensile test results showed that the strength of the as-cast ZM21 alloys were better than that of the as-cast ZM20 alloys and further improvement in mechanical properties occurred with the rolling of the both alloys. The most superior hardness was found in the as-rolled ZM21 alloy. In the total 400-m reciprocal corrosive wear test in the 3.5% NaCl solution, the lowest mass loss was in the as-rolled ZM21 alloys. In the potentiodynamic corrosion test, the highest corrosion resistance was occurred by the as-cast ZM20 alloy.
Twórcy
  • Sinop University, The Vocational School, Mechatronic Department, Sinop, Turkey
autor
  • Karabuk University, Manufacturing Engineering, Turkey
autor
  • Karabuk University, Metallurgy and Materials Engineering, Turkey
  • Karabuk University, Metallurgy and Materials Engineering, Turkey
autor
  • Karabuk University, Metallurgy and Materials Engineering, Turkey
Bibliografia
  • [1] M.E. Mehtedi, L. Balloni, S. Spigarelli, E. Evangelista, G. Rosen, Hot workability and constitutive equations of ZM21 magnesium alloy, Key Eng. Mater. 367, 79-86 (2008). DOI: https://doi.org/10.4028/www.scientific.net/KEM.367.79
  • [2] H.A. Gören, M. Ünal, E. Koç, A Comparative Study on Microstructure Properties of AZ91 Magnesium Alloy with Silicon Addition Using Ceramic Mold, Acta Physica Polonica A 135, 5, 884-887 (2019). DOI: https://doi.org/10.12693/APhysPolA.135.884
  • [3] D.L. Atwell, M.R. Barnett, Extrusion limits of magnesium alloys, Metall. Mater. Trans. A 38A, 12, 3032-3041 (2007). DOI: https://doi.org/10.1007/s11661-007-9323-2
  • [4] H. Zengin, Y. Turen, L. Elen, A Comparative Study on Microstructure, Mechanical and Tribological Properties of A4, AE41, AS41 and AJ41 Magnesium Alloys, J. of Materi. Eng. and Perform. 28, 4647-4657 (2019). DOI: https://doi.org/10.1007/s11665-019-04223-8
  • [5] L. Elen, B. Cicek, E. Koc, Y. Turen, Y. Sun, H. Ahlatci, Effects of alloying element and cooling rate on properties of AM60 Mg alloy, Materials Research Express, 096511, 6 (9), 2053-1591, July (2019). DOI: https://doi.org/10.1088/2053-1591/ab2b13
  • [6] L.J. Liu, M. Schlesinger, Corrosion of magnesium and its alloys, Corros. Sci. 51, 1733-1737 (2009). DOI: https://doi.org/10.1016/j.corsci.2009.04.025
  • [7] Q. Li, S. Fan, J. Peng, J. Yang, X. Jiang, F. Pan, Effects of Ce on microstructure and mechanical properties of ZM21 magnesium alloy, Materials Research Innovations 1, sup. 4, S4-178-S4-182 (2014). DOI: https://doi.org/10.1179/1432891714Z.000000000662
  • [8] G. Mann, J.R. Griffiths, C.H. Cáceres, Hall-Petch parameters in tension and compression in cast Mg-2Zn alloys, Journal of Alloys and Compounds 378, 188-191 (2004). DOI: https://doi.org/10.1016/j.jallcom.2003.12.052
  • [9] I.T. Caraballo, P.E.J.R.D.D. Castillo, Modelling and Design of Magnesium and High Entropy Alloys Through Combining Statistical and Physical Models. JOM 67, 108-117 (2015). DOI: https://doi.org/10.1007/s11837-014-1242-2
  • [10] C.H. Caceres, G.E. Mann, J.R. Griffiths, Grain size hardening in Mg and Mg-Zn solid solutions, Metall. Mater. Trans. A 42, 1950-1959 (2011). DOI: https://doi.org/10.1007/s11661-010-0599-2
  • [11] M. Thirumurugan, S. Kumaran, S. Suwas, T. Srinivasa Rao, Effect of rolling temperature and reduction in thickness on microstructure and mechanical properties of ZM21 magnesium alloy and its subsequent annealing treatment, Materials Science and Engineering: A 528, 29-30, 15, 8460-8468, November (2011). DOI: https://doi.org/10.1016/j.msea.2011.07.047
  • [12] S. Gündüz, M.A. Erden, H. Karabulut, M. Türkmen, The Effect of Vanadium and Titanium on Mechanical Properties of Microalloyed PM Steel, Powder. Metall. Met. Ceram. 55, 277-287 (2016). DOI: https://doi.org/10.1007/s11106-016-9803-2
  • [13] J. Yan, Z. Qin, K. Yan, Mechanical Properties and Microstructure Evolution of Mg-6 wt.% Zn Alloy during Equal-Channel Angular Pressing, Metals 8, 10, 841 (2018). DOI: https://doi.org/10.3390/met8100841
  • [14] J. Kubásek, D. Vojtěch, Structural characteristics and corrosion behavior of biodegradable Mg-Zn, Mg-Zn-Gd alloys, J. Mater. Sci.: Mater. Med. 24, 1615-1626 (2013). DOI: https://doi.org/10.1007/s10856-013-4916-3
  • [15] I.T. Caraballo, E.I.G. Nava, P.E.J.R.D.D. Castillo, Understanding the factors influencing yield strength on Mg alloys, Acta Materialia 75, 287-296 (2014). DOI: https://doi.org/10.1016/j.actamat.2014.04.064
  • [16] S. Gollapudi, Grain size distribution effects on the corrosion behaviour of materials, Corrosion Science 62, 90-94 (2012). DOI: https://doi.org/10.1016/j.corsci.2012.04.040
  • [17] E. Zhang, D. Yin, L. Xu, L. Yang, K. Yang, Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application, Materials Science and Engineering: C 29, 3, 987-993 (2009). DOI: https://doi.org/10.1016/j.msec.2008.08.024
  • [18] H. Li, D. Liu, Y. Zhao, et al., The Influence of Zn Content on the Corrosion and Wear Performance of Mg-Zn-Ca Alloy in Simulated Body Fluid. J. of Materi. Eng. and Perform. 25, 3890-3895 (2016). DOI: https://doi.org/10.1007/s11665-016-2207-0
Uwagi
1. This research is supported by the Scientific Research Projects of Karabuk University (BAP) with project no. FDK-2019-2103
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-307933f0-8dfa-4d9b-8c87-d6ded271b9df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.