PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen Dilatation of V-Based Composite Membranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the problems limiting the use of vanadium as hydrogen permeable membranes is its high dilatation upon hydrogen dissolution in it. The information available for the dilatation coefficient value (Δυ/Ω) is contradictory, experimental information on the hydrogen solubility in vanadium within 100-1000 kPa at from 250 to 700°С is very limited. It does not enable to calculate the membrane dilatation. The article contains the measuring results for dilatation of strips made of vanadium foil 100 μm thick in a hydrogen atmosphere in the pressure range from 75 to 1000 kPa, temperatures from 250 to 700°С. The dilatation coefficient (Δυ/Ω) of polycrystalline vanadium was calculated based on the data obtained for dilatation and data previously published for the hydrogen concentration in the α-solid solution at 400°С. It is 0.165. Isobars for the temperature dependence of the hydrogen concentration in vanadium are calculated and constructed using the dilatation measuring results and the dilatation coefficient values. These data are agreed with theoretical and experimental data published previously. The limiting change in concentration and linear dimensions over the cross section of a hydrogen-permeable membrane from V was estimated at various temperatures and operating pressures at the membrane outlet based on the isobars plotted for temperature dependences of the CH/V. The conclusions are made on the optimal working conditions of Pd/V/Pd membranes when hydrogen is released from hydrogen-containing gas mixtures in accordance with Fick’s 1st law and data published previously for hydrogen concentration value at which solid hydrogen solutions in vanadium become brittle.
Twórcy
  • Satbayev University; Engineer of Laboratory Metallurgical Sciences, Institute of Metallurgy and Ore Beneficiation, 050010, Almaty City, Shevchenko str., 29/133, The Republic of Kazakhstan
  • Satbayev University; Engineer of Laboratory Metallurgical Sciences, Institute of Metallurgy and Ore Beneficiation, 050010, Almaty City, Shevchenko str., 29/133, The Republic of Kazakhstan
  • Satbayev University; Engineer of Laboratory Metallurgical Sciences, Institute of Metallurgy and Ore Beneficiation, 050010, Almaty City, Shevchenko str., 29/133, The Republic of Kazakhstan
  • Satbayev University; Engineer of Laboratory Metallurgical Sciences, Institute of Metallurgy and Ore Beneficiation, 050010, Almaty City, Shevchenko str., 29/133, The Republic of Kazakhstan
Bibliografia
  • [1] A.I. Livshits, M.E. Notkin, Superpermeability of a niobium partition for hydrogen atoms and ions, letters to ZhTF. 7 (23), 1417-1420 (1981).
  • [2] A.I. Livshits, M.E. Notkin, A.A. Samartsev, J. Nucl. Mater. 170, 74-94 (1990). DOI: https://doi.org/10.1016/0022-3115(90)90329-L
  • [3] V.N. Alimov, A.O. Busnyuk, M.E. Notkin, A.I. Livshits, Tech. Phys. Lett. 40 (3), 228-230 (2014). DOI: https://doi.org/10.1134/S1063785014030031
  • [4] V.N. Alimov, A.O. Busnyuk, M.E. Notkin, A.I. Livshits, J. Memb. Sci. 457, 103-112 (2014). DOI: https://doi.org/10.1016/j.memsci.2014.01.053
  • [5] T.S. Moss, N.M. Peachey, R.C. Show, R.C. Dye, Int. J. Hydrogen Energy 23, 99-106 (1998).
  • [6] V.E. Fromm, E. Gebhardt, Gase und Kohlenstoff in Metallen, Springer, Berlin (1976).
  • [7] M.D. Dolan, J. Memb. Sci. 362, 12-28 (2010). DOI: https://doi.org/10.1016/j.memsci.2010.06.068
  • [8] D.M. Viano, M.D. Dolan, F. Weiss, A. Adibhata, J. Memb. Sci. 487, 83-89 (2015). DOI: https://doi.org/10.1016/j.memsci.2015.03.048
  • [9] S.I. Jeon, J.H. Park, E. Magnone, Y.T. Lee, E. Fleury, Current Applied Physics 12, 394-400 (2012). DOI: https://doi.org/10.1016/j.cap.2011.07.036.
  • [10] Y. Zhang, T. Ozaki, M. Komaki, C. Nishimura, J. Alloys Compd. 356-357, 553-556 (2003). DOI: https://doi.org/10.1016/S0925-8388(02)01260-4
  • [11] J.Y. Yang, C. Nishimura, M. Komaki, J. Alloys Compd. 431, 180-184 (2007). DOI: https://doi.org/10.1016/j.jallcom.2006.05.120
  • [12] S.N. Paglieri, N.K. Pal, M.D. Dolan, S.-M. Kim, W.A. Chien, J.H. Lamb, D. Chandra, K.M. Hubbard, D.J. Moore, J. Memb. Sci. 378, 42-45 (2011). DOI: https://doi.org/10.1016/j.memsci.2011.04.049
  • [13] A. Suzuki, H. Yukawa, T. Nambu, Y. Matsumoto, Y. Murata, Materials Transactions 57 (10), 1823-1831 (2016).
  • [14] R. Grena, M. Celino, P. Tarquini, Int. J. Hydrogen Energy 36, 13858-13865 (2011). DOI: https://doi.org/10.1016/j.ijhydene.2011.07.130
  • [15] M. Taxak, S. Kumar, A. Mukherjee, N. Krishnamurthy, A.K. Suri, Lattice expansion of tantalum due to dissolved hydrogen, Proceeding of the 18th International Symposium on Thermal Analysis. Mumbai, India, (2012).
  • [16] H. Pfeiffer, H. Peisl, Phys. Lett. 60 (4), 363-364 (1977).
  • [17] K.Y. Park, H.J. Kin, Y.J. Suh, Powder Technol. 172, 144-148 (2007). DOI: https://doi.org/10.1016/j.powtec.2006.11.011
  • [18] M. Taxak, S. Kumar, N. Krishnamurthy, A.K. Suri, G.P. Tiwari, Process Appl. Ceram. 6 (2), 73-76 (2012). DOI: https://doi.org/10.2298/PAC1202073T
  • [19] H.J. Pfeiffer, H. Peisl, Phys. Lett. A. 60 (4), 363-364 (1977).
  • [20] A.J. Maeland, J. Phys. Chem. 68, 2197 (1964).
  • [21] G. Schaumann, J. Völki, G. Alefeld, Physica Status Solidi (B). 42 (1), 401-413 (1970). DOI: https://doi.org/10.1002/pssb.19700420141
  • [22] K.L. Hardcastle, T.R. Gibb, J. Phys. Chem. 76 (6), 927-930 (1972).
  • [23] H. Asano, M. Hirabayashi, Physica Status Solidi (A). 15 (1), 267-279 (1973). DOI: https://doi.org/10.1002/pssa.2210150130
  • [24] A. Magerl, B. Berre, G. Alefeld, Physica Status Solidi (A). 36 (1), 161-171 (1976). DOI: https://doi.org/10.1002/pssa.2210360117
  • [25] G. Alefeld, J. Völkl, Hydrogen In Metals I: Basic Properties. Springer (1978).
  • [26] E. Wicke, J. Blaurock, J. Less. Common. Met. 130, 351 (1987).
  • [27] A.V. Panichkin, A.A. Mamaeva, A.M. Derbisalin, A.K. Kenzhegulov, A.T. Imbarova, Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. 4, 130-139 (2018). DOI: https://doi.org/10.31643/2018/166445
  • [28] E. Veleckis, R.K. Edwards, J. Phys. Chem. 73 (3), 683-692 (1969). DOI: https://doi.org/10.1021/j100723a033
  • [29] G. Alefeld, J. Völkl, Hydrogen In Metals II: Application-oriented Propreties. Springer (1978).
  • [30] T. Schober, A. Carl, Physica Status Solidi (A). 43 (2), 443-449 (1977). DOI: https://doi.org/10.1002/pssa.2210430210
  • [31] H. Yukawa, T. Nambu, Y. Matsumoto, J. Alloys Compd. 509, 881-884 (2011). DOI: https://doi.org/10.1016/j.jallcom.2010.09.161
  • [32] V.N. Alimov, A.O. Busnyuk, M.E. Notkin, E. Yu. Peredistov, A.I. Livshits, J. Membr. Sci. 481, 54-62 (2015). DOI: https://doi.org/10.1016/j.memsci.2015.01.058
  • [33] D.M. Viano, M.D. Dolan, F. Weiss, A. Adibhatla, J. Membr. Sci. 487, 83-89 (2015). DOI: https://doi.org/10.1016/j.memsci.2015.03.048
  • [34] M.D. Dolan, D.M.Viano, M.J. Langley, K.E. Lamb, J. Membr. Sci. 549, 306-311 (2017). DOI: https://doi.org/10.1016/j.memsci.2017.12.031
  • [35] S. Adhikari, S. Fernando, Ind. Eng. Chem. Res. 45 (3), 875-881 (2006). DOI: https://doi.org/10.1021/ie050644l
  • [36] K. Akamatsu, S.-I. Nakao, Membrane. 36, 104-112. (2011). DOI: https://doi.org/10.5360/membrane.36.104
  • [37] S. Liguori, A. Iulianelli, F. Dalena, P. Pinacci, F. Drago, M. Broglia, Y. Huang, A. Basile, Membranes (Basel) 4, 143-162 (2014). DOI: https://doi.org/10.3390/membranes4010143
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30764ccd-25bd-49d2-9245-c8528a58041f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.