PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Wpływ naturalnego zeolitu na właściwości betonu wysokowartościowego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Effect of natural zeolite on the properties of high performance concrete
Języki publikacji
PL EN
Abstrakty
PL
Zbadano szereg właściwości fizycznych betonu wysokiej wartościowości, w którym zastępowano cement portlandzki naturalnym zeolitem w ilości aż do 40% masowych. Uzyskane wyniki doświadczalne wykazują, że zastąpienie 10% cementu zeolitem stanowi korzystne rozwiązanie. Ta zawartość zeolitu zapewnia dobre właściwości betonu, między innymi transport wody i pary wodnej utrzymuje się na korzystnym poziomie oraz parametry cieplne są akceptowalne, a także wytrzymałość spełnia wymagania BWW. Natomiast beton zawierający 10% zeolitu nie ma odporności na zamrażanie w obecności soli odladzających. Z tego względu beton, nawet z tym małym dodatkiem zeolitu, nie powinien być stosowany w konstrukcjach narażonych na takie zagrożenia.
EN
Bulk density, matrix density, open porosity, pore size distribution, compressive strength, resistance against de-icing salts, water absorption coefficient, water vapor diffusion resistance factor, adsorption and desorption isotherms, thermal conductivity, and specific heat capacity of high performance concrete containing up to 40% of natural zeolite as Portland cement replacement were measured and compared with reference Portland cement concrete. Experimental results show that the replacement of Portland cement by natural zeolite in the amount of 10% by mass can be considered the most suitable option among the studied mixes. At this replacement level, the increase in open porosity, thus in liquid water transport properties is within reasonable limits, the mix retains its high performance character as for the compressive strength, the water vapor transport parameters, and thermal parameters are acceptable. The poor resistance against de-icing salts presents, however, a limitation even for the mix with the 10% zeolite dosage. Therefore, the mixes analyzed in this paper should not be used in such cases where de-icing salts are likely to act during their service life.
Czasopismo
Rocznik
Strony
150--159
Opis fizyczny
Bibliogr. 25 poz., il., tab.
Twórcy
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
autor
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
  • Institute of Technology of Building Materials and Components, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
autor
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
Bibliografia
  • 1. T. Baran, W. Drożdż, P. Pichniarczyk, The use of calcareous fly ash in cement and concrete manufacture. Cement Wapno Beton 17/79, 50-56 (2012).
  • 2. E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, Fly-Ash Influence on the Properties of High Performance Concrete. Cement Wapno Beton 13/75, 189-204 (2009).
  • 3. T. K. Erdem, G. Tayfur, Ö. Kirca, Experimental and modelling study of strength of high strength concrete containing binary and ternary binders. Cement Wapno Beton 16/78, 224-237 (2011).
  • 4. E. Vejmelková, M. Keppert, S. Grzeszczyk, B. Skaliński, R. Černý, Properties of Self-Compacting Concrete Mixtures Containing Metakaolin and Blast Furnace Slag. Construction and Building Materials 25, 1325-1331 (2011).
  • 5. K. Ganesan, K. Rajagopal, K. Thangavel, Evaluation of bagasse ash as supplementary cementitious material. Cement and Concrete Composites 29, 515-524 (2007).
  • 6. M.S. Mansour, M.T. Abadlia, R. Jauberthie, I. Messaoudene, Metakaolin as a pozzolan for high-performance mortar. Cement Wapno Beton 17/79, 102-108 (2012).
  • 7. E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, High Performance Concrete with Czech Metakaolin: Experimental Analysis of Strength, Toughness and Durability Characteristics. Construction and Building Materials 24, 1404-1411 (2010).
  • 8. C. Stanislao, C. Rispoli, G. Vola, P. Cappelletti, V. Morra, M. De Gennaro, Contribution to the knowledge of ancient Roman seawater concretes: Phlegrean pozzolan adopted in the construction of the harbour at Soli-Pompeiopolis (Mersin, Turkey). Periodico di Mineralogia 80, 471-488 (2011).
  • 9. N. Su, H.Y. Fang, Z.H. Chen, F.S. Liu, Reuse of waste catalysts from petrochemical industries for cement substitution. Cement and Concrete Research 30, 1773-1783 (2000).
  • 10. C.S. Poon, L. Lam, S.C. Kou, Z.S. Lin, A study on the hydration rate of natural zeolite blended cement pastes. Construction and Building Materials 13, 427-432 (1999).
  • 11. N. Feng, X. Feng, T. Hae, F. Xing, Effect of ultrafine mineral powder on the charge passed of the concrete. Cement and Concrete Research 32, 623-627 (2002).
  • 12. B. Ahmadi, M. Sherkarchi, Use of natural zeolite as a supplementary cementitious material. Cement and Concrete Composites 32, 134-141 (2010).
  • 13. I. Janotka, L. Krajci, Sulfate resistance and passivation ability of the mortar made from pozzolan cement with zeolite. Journal of Thermal Analysis and Calorimetry 94, 7-14 (2008).
  • 14. C. Bilim, Properties of cement mortars containing clinoptilolite as a supplementary cementitious material. Construction and Building Materials 25, 3175-3180 (2011).
  • 15. C.B. Sisman, E. Gezer, Performance characteristics of concrete containing natural and artificial pozzolans. Journal and Agriculture and Environment 9, 493-497 (2011).
  • 16. M. Najimi, J. Sobhani, B. Ahmadi, M. Shekarchi, An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Construction and Building Materials 35, 1023-1033 (2012).
  • 17. C. Karakurt, I. B. Topçu, Effect of blended cements with natural zeolite and industrial by-products on rebar corrosion and high temperature resistance of concrete. Construction and Building Materials 35, 906-911 (2012).
  • 18. S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, R. Plagge, Interlaboratory Comparison of Hygric Properties of Porous Building Materials. Journal of Thermal Envelope and Building Science 27, 307-325 (2004).
  • 19. ČSN EN 12390-3 Testing of hardened concrete – Part 3: Compressive strength. Czech Standardization Institute, Prague, 2002.
  • 20. ČSN 731326/Z1:1984, Determination of the resistance of the surface of concrete against water and de-icing salts. Czech Standardization Institute, Prague, 2003.
  • 21. E. Vejmelková, M. Pavlíková, M. Jerman, R. Černý, Free Water Intake as Means of Material Characterization. Journal of Building Physics 33, 29-44 (2009).
  • 22. S. Y. N. Chan, X. Ji, Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes. Cement and Concrete Composites 21, 293-300 (1999).
  • 23. F. Canpolat, K. Yılmaz, M.M. Kose, M. Sumer, M.A. Yurdusev, Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production. Cement and Concrete Research 34, 731-735 (2004).
  • 24. E. Vejmelková, M. Keppert, P. Rovnaníková, M. Ondráček, Z. Keršner, R. Černý, Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material. Cement and Concrete Composites 34, 55-61 (2012).
  • 25. R. Černý, P. Rovnaníková, Transport Processes in Concrete. Spon Press, London 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30752329-8772-41b2-a00f-7f1f6649af21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.