PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design optimization of obstacle avoidance of intelligent building steel bar by integrating reinforcement learning and BIM technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In promoting the construction of prefabricated residential buildings in Yunnan villages and towns, the use of precast concrete elements is unstoppable. Due to the dense arrangement of steel bars at the joints of precast concrete elements, collisions are prone to occur, which can affect the stress of the components and even pose certain safety hazards for the entire construction project. Because the commonly used the steel bar obstacle avoidance method based on building information modeling has low adaptation rate and cannot change the trajectory of the steel bar to avoid collision, a multi-agent reinforcement learning-based model integrating building information modeling is proposed to solve the steel bar collision in reinforced concrete frame. The experimental results show that the probability of obstacle avoidance of the proposed model in three typical beam-column joints is 98.45%, 98.62% and 98.39% respectively, which is 5.16%, 12.81% and 17.50% higher than that of the building information modeling. In the collision-free path design of the same object, the research on the path design of different types of precast concrete elements takes about 3–4 minutes, which is far less than the time spent by experienced structural engineers on collision-free path modeling. The experimental results indicate that the model constructed by the research institute has good performance and has certain reference significance.
Rocznik
Strony
621--634
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Yellow River Conservancy Technical Institute, Department of Civil Engineering and Transportation Engineering, 475000 Kaifeng, China
autor
  • Yellow River Conservancy Technical Institute, Department of Civil Engineering and Transportation Engineering, 475000 Kaifeng, China
Bibliografia
  • [1] J. Wang, “Optimized mathematical model for energy efficient construction management in smart cities using building information modeling”, Strategic Planning for Energy and the Environment, vol. 41, no. 1, pp. 61–79, 2022, doi: 10.13052/spee1048-5236.4113.
  • [2] X.K. Ji, J.T. Hai, W.G. Luo, C.X. Lin, Y. Xiong, Z.K. Ou, and J.Y. Wen, “Obstacle avoidance in multi-agent formation process based on deep reinforcement learning”, Journal of Shanghai Jiao Tong University, vol. 26, no. 5, pp. 680–685, 2021, doi: 10.1007/s12204-021-2357-6.
  • [3] A. Gao, Q. Wang, W. Liang, and Z.G. Ding, “Game combined multi-agent reinforcement learning approach for UAV assisted offloading”, IEEE Transactions on Vehicular Technology, vol. 70, no. 12, pp. 12888–12901, 2021, doi: 10.1109/TVT.2021.3121281.
  • [4] J.Y. Su, J. Huang, S. Adams, Q. Chang, and P.A. Beling, “Deep multi-agent reinforcement learning for multi-level preventive maintenance in manufacturing systems”, Expert Systems with Application, vol. 192, no. 4, pp. 62–74, 2022, doi: 10.1016/j.eswa.2021.116323.
  • [5] K.W. Yu, G. Wu, S.Q. Li, and G.Y. Li, “Local observations-based energy-efficient multi-cell beamforming via multi-agent reinforcement learning”, Journal of Communication and Information Networks, vol. 7, no. 2, pp. 170–180, 2022, doi: 10.23919/JCIN.2022.9815200.
  • [6] L.Yan, X.H. Chang,N.H.Wang, R.Y. Tian, L.P. Zhang, andW. Liu, “Learning howto avoid obstacles:Anumerical investigation for maneuvering of self-propelled fish based on deep reinforcement learning”, International Journal for Numerical Methods in Fluids, vol. 93, no. 10, pp. 3073–3091, 2021, doi: 10.1002/fld.5025.
  • [7] X.J. Zhu, Y.H. Liang, H.X.X. Sun, X.Q. Wang, and B. Ren, “Robot obstacle avoidance system using deep reinforcement learning”, Industrial Robot, vol. 49, no. 2, pp. 301–310, 2022, doi: 10.1108/IR-06-2021-0127.
  • [8] C.J. Xu, B.F. Li, Y. Yuan, “Disturbance observer-based robust formation-containment of discrete-time multiagent systems with exogenous disturbances”, Complexity, vol. 2021, art. no. 5525067, 2021, doi: 10.1155/2021/5525067.
  • [9] N. Thumiger and M. Deghat, “A multi-agent deep reinforcement learning approach for practical decentralized UAV collision avoidance”, IEEE Control Systems Letters, vol. 6, pp. 2174–2179, 2022, doi: 10.1109/LCSYS.2021.3138941.
  • [10] Z. Wang, S.W. Zhang, X.N. Feng, and Y.C. Sui, “Autonomous underwater vehicle path planning based on actor-multi-critic reinforcement learning”, Proceedings of the Institution of Mechanical Engineers, Part I. Journal of Systems and Control Engineering, vol. 235, no. 10, pp. 1787–1796, 2021, doi: 10.1177/0959651820937085.
  • [11] P. Chen, J. Pei, W. Lu, and M. Li, “A deep reinforcement learning based method for real-time path planning and dynamic obstacle avoidance”, Neurocomputing, vol. 497, no. 8, pp. 64–75, 2022, doi: 10.1016/j.neucom.2022.05.006.
  • [12] M.M. Ejaz, T.B. Tang, and C.K. Lu, “Vision-based autonomous navigation approach for a tracked robot using deep reinforcement learning”, IEEE Sensors Journal, vol. 21, no. 2, pp. 2230–2240, 2021, doi: 10.1109/JSEN.2020.3016299.
  • [13] Q.R. Zhang, W. Pan, and V. Reppa, “Model-reference reinforcement learning for collision-free tracking control of autonomous surface vehicles”, IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 8770–8781, 2022, doi: 10.1109/TITS.2021.3086033.
  • [14] J. Sobieraj, D. Metelski, and P. Nowak, “PMBoK vs. PRINCE2 in the context of Polish construction projects: Structural Equation Modelling approach”, Archives of Civil Engineering, vol. 67, no. 2, pp. 551–579, 2021, doi: 10.24425/ace.2021.137185.
  • [15] Y.M. John, A. Sanusi, and I.R. Yusuf, “Reliability analysis of multi-hardware–software system with failure interaction”, Journal of Computational and Cognitive Engineering, vol. 2, no. 1, pp. 38–46, 2023, doi: 10.47852/bonviewJCCE2202216.
  • [16] C. Hao, J.J. Xia, L. Wu, M. Xiao, “Reinforcement layout design of three-dimensional members under a state of complex stress”, Archives of Civil Engineering, vol. 69, no. 1, pp. 421–436, 2023, doi: 10.24425/ace.2023.144181.
  • [17] P.A. Ejegwa and J.M. Agbetayo, “Similarity-distance decision-making technique and its applications via intuitionistic fuzzy pairs”, Journal of Computational and Cognitive Engineering, vol. 2, no. 1, pp. 68–74, 2023, doi: 10.47852/bonviewJCCE512522514.
  • [18] P. Szeptynski and L. Mikulski, “Preliminary optimization technique in the design of steel girders according to Eurocode 3”, Archives of Civil Engineering, vol. 69, no. 1, pp. 71–89, 2023, doi: 10.24425/ace.2023.144160.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3071b1f8-a153-475a-9c4b-0c5b08ca5bc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.