PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of parameters of a vibroconveyor system for infrared drying of soy

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja parametrów wibracyjnej suszarki do soi
Języki publikacji
EN
Abstrakty
EN
This paper proposes a method to determine the optimal parameters for the drying of soybean using a kinematic vibration dryer. Among the main parameters of the investigated vibroconveyor are heat and mass transfer, physical and mechanical. The paper presents a mathematical model of the dependence of parameters of the soybean drying process of soybean built based on experimental data obtained by organizing an effective experiment plan with a sufficiently large number of factor levels. To determine the rational parameters for drying soybean, it is important to build the most accurate and adequate mathematical model, which will determine the most accurate values of the required parameters. For this purpose, it is recommended to conduct an experiment with as many levels of factors as possible. The article proposes an experiment established on a dedicated balanced orthogonal plan, which is optimal according to the D-efficiency criterion. Based on the experimental data, an adequate mathematical model of the dependence of the drying characteristics of soybean (moisture of the processed material (%), temperature inside the product layer (°С) on the parameters – vibration amplitude (mm), distance from the conveyor surface (mm), radiation power (Wt), weight (g·min-1). Following the analysis of the constructed mathematical model, optimal parameters of the developed vibroconveyor infrared dryer were substantiated. The main characteristics of the vibroconveryor mechanism of interoperational transportation of bulk products in the working area were also determined, and a technical and economic analysis of the developed oscillatory system was conducted.
PL
W pracy zaproponowano metodę wyznaczania optymalnych parametrów suszenia soi za pomocą suszarki z funkcją kinematycznego wzbudzania drgań. Główne parametry badanego urządzenia to wymiana ciepła i masy oraz właściwości fizyczne i mechaniczne. W celu przeprowadzenia badań zbudowano model matematyczny zależności między wskaźnikami procesu suszenia soi na podstawie danych doświadczalnych uzyskanych poprzez zorganizowanie efektywnego schematu doświadczenia z odpowiednio dużą liczbą poziomów czynników. By określić racjonalne parametry suszenia soi należy zbudować jak najdokładniejszy i adekwatny model matematyczny, który wyznaczy najdokładniejsze wartości wymaganych parametrów. W artykule zaproponowano przeprowadzenie eksperymentu na specjalnie skonstruowanym zrównoważonym planie ortogonalnym, optymalnym według kryterium Defektywności. Na podstawie danych eksperymentalnych opracowano odpowiedni model matematyczny zależności charakterystyki suszenia soi (wilgotność przetwarzanego materiału (%), temperatura wewnątrz warstwy produktu (°С) od parametrów - amplitudy drgań (mm), odległości od powierzchni przenośnika taśmowego (mm), mocy promieniowania (Wt), masy (g·min-1). Analiza zaproponowanego modelu matematycznego pozwoliła uzasadnić optymalne parametry opracowanej wibrosuszarki na podczerwień, główne cechy mechanizmu wibracyjno-falowego do transportu produktów sypkich w obszarze roboczym oraz przeprowadzić analizę techniczno-ekonomiczną opracowanego systemu oscylacyjnego.
Rocznik
Strony
157--166
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Tavria State Agrotechnological University, B. Khmelnitsky Ave.18, 72310, Melitopol, Ukraine
  • Tavria State Agrotechnological University, B. Khmelnitsky Ave.18, 72310, Melitopol, Ukraine
autor
  • Polissia National University, 10008, Zhytomyr, Ukraine
  • Tavria State Agrotechnological University, B. Khmelnitsky Ave.18, 72310, Melitopol, Ukraine
  • Tavria State Agrotechnological University, B. Khmelnitsky Ave.18, 72310, Melitopol, Ukraine
  • Tavria State Agrotechnological University, B. Khmelnitsky Ave.18, 72310, Melitopol, Ukraine
  • Program NAWA, University of Agriculture in Krakow, Krakow, Poland
  • Faculty of Engineering and Technology, Higher Educational Institution "Podillia State University", Kamianets-Podilskyi, Ukraine
  • Department of Farm Structures and Irrigation, Faculty of Agriculture, Ege University, Izmir, Türkiye
  • Department of Production Engineering, Logistics and Applied Computer Science, University of Agriculture in Krakow, Krakow, Poland
Bibliografia
  • Al Labadi, L. (2015). Some refinements on Fedorov’s algorithms for constructing D-optimal designs. Brazilian Journal of Probability and Statistics, 29(1), 53-70.
  • Atanazevich, V. I. (2000). Drying food. Reference Manual. Moscow: DeLi.
  • Atkinson, A. C., & Donev, A. N. (1989). The construction of exact D-optimum experimental designs with application to blocking response surface designs. Biometrika, 76(3), 515-526.
  • Atwood, C. L. (1973). Sequences converging to D-optimal designs of experiments. Annals of Mathematical Statistics. 1, 342-352.
  • Bandura, V., Turcan, O., & Palamarchuk, V. (2015). Experimental study of technological parameters of the process of infrared drying of a moving ball of oilseed crops. MOTROL Commission of Motorization and Energetics in Agriculture, 17(4), 211-214.
  • Bartel, R. G. & Sherbert, D. R. (2000). Introduction to Real Analysis. New York: Wiley.
  • Bulgakov, V., Nikolaenko, S., Kiurchev, S., Pascuzzi, S., Arak, M., Santoro, F., Olt, J. (2020). The theory of vibrational wave movement in drying grain mixture. Agronomy Research, 18(2), 360-375.
  • Cook, R. D., & Nachtrheim, C. J. (1980). A comparison of algorithms for constructing exact D-optimal designs. Technometrics, 22(3), 315-324.
  • Faichuk, O., Voliak, L., Glowacki, S., Pantsyr, Y., Slobodian, S., Szeląg-Sikora, A., & Gródek-Szostak, Z. (2022). European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU. Sustainability, 14, 3712.
  • Ginzburg, A.S. (1973). Drying food, M.: Food industry, 528.
  • Ivanyshyn, V., Yermakov, S., Ishchenko, T., Mudryk, K. (2020). Calculation algorithm for the dynamic coefficient of vibro-viscosity and other properties of energy willow cuttings movement in terms of their unloading from the tanker. In E3S Web of Conferences, 154, 04005.
  • Jung, J. S., & Yum, B. J. (1996). Construction of exact D-optimal designs by Tabu search. Computational Statistics & Data Analysis, 21(2), 181-191.
  • Kiurchev, S., Verkholantseva, V., Kiurcheva, L., & Dumanskyi, O. (2020). Physical-mathematical modeling of the vibrating conveyor drying process of soybeans. Latvia University of Sciences and Techologies Faculty of Engineering. Jelgava, 991-996.
  • Kuhfeld, W. F. (2010). Experimental design, efficiency, coding, and choice designs. Marketing research methods in sas: Experimental design, choice, conjoint, and graphical techniques, 47-97.
  • Lutsiak, V., Hutsol, T., Kovalenko, N., Kwaśniewski, D., Kowalczyk, Z., Belei, S., & Marusei, T. (2021). Enterprise Activity Modeling in Walnut Sector in Ukraine. Sustainability, 13(23), 13027.
  • Malkina, V., Kiurchev, S., Osadchyi, V., & Strokan, O. (2019). The formation of orthogonal balanced experiment designs based on special block matrix operations on the example of the mathematical modeling of the pneumatic gravity seed separator. In Modern Development Paths of Agricultural Production (pp. 111-119). Springer, Cham.
  • Meyer, R. K., & Nachtsheim, C. J. (1995). The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics, 37(1), 60-69.
  • Nguyen, N. K., & Miller, A. J. (1992). A review of some exchange algorithms for constructing discrete D-optimal designs. Computational Statistics & Data Analysis, 14(4), 489-498.
  • Palamarchuk, I. P., Tsurkan, O. V., & Palamarchuk, V. I. (2015). The analysis of theoretical and experimental research results of infrared vibrowave conveyer dryer main parameters. TEKA. Commissionof Motorization and Power Industry in Agriculture, 15(4), 314-323.
  • Palamarchuk, I., Kiurchev, S., Kiurcheva, L., & Verkholantseva, V. (2019). Analysis of Main Process Characteristics of Infrared Drying in the Moving Layer of Grain Produce. In Modern Development Paths of Agricultural Production (pp. 317-322). Springer, Cham.
  • Palamarchuk, I., Tsurkan, O., Palamarchuk, V., & Kharchenko, S. (2016). Research of competitiveness of vibrowave infrared conveyor dryer for postharvest processing of grain. Eastern-European Journal of Enterprise Technologies, 27(8), 79-85.
  • Palamarchuk, I.P., Drukovany, M.F., Pala-Marchuk, V.I., & Burova Z.A. (2017). Vibromechanical intensification of drying processes of oil-containing raw materials: monograph row. "COMPRINT", 325.
  • Sagnol, G., & Harman, R. (2015). Computing exact $ D $-optimal designs by mixed integer secondorder cone programming. The Annals of Statistics, 43(5), 2198-2224.
  • Samoychuk, K.O., Kiurchev, S.V., Yalpachik, V.F., Palyanichka, N.O., Verkholantseva, V.O., Lomeyko, O.P., (2020). Innovative technologies and equipment industries. Processing of crop products: A guide. Melitopol, 307.
  • Schneid, S. (2010). PAT in freeze drying: monitoring of product pesistance using non-invasive NIRspectroscopic TDLAS measurements/S. Schneid, H. Gieseler. Proc. 7th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Valetta, Malta, March 8-11.
  • Schubert, H., Regier, M., & Knoerzer, K. (Eds.). (2005). The microwave processing of foods. Taylor & Francis US.
  • Tryhuba, A., Kubon, M., Tryhuba, I., Komarnitskyi, S., Tabor, S., Kwaśniewski, D., Faichuk, O., Hohol, T. (2022). Taxonomy and Stakeholder Risk Management in Integrated Projects of the European Green Deal. Energies, 15, 2015.
  • Yermakov S., Hutsol T., Rozkosz A., Glowacki S., Slobodian S. (2021a). Evaluation of Effective Parameters of Biomass Heat Treatment in Processing for Solid Fuel. Engineering for Rural Development. 241, 1114-1119.
  • Yermakov, S., Hutsol, T., Glowacki S., Hulevskyi V., & Pylypenko V. (2021b). Primary Assessment of the Degree of Torrefaction of Biomass Agricultural Crops. Environment. Technologies. Resources, 241, 264-267.
  • Yermakov, S., Taras, H., Mudryk, K., Dziedzic, K., & Mykhailova, L. (2019). The analysis of stochastic processes in unloadingthe energywillow cuttings from the hopper. Environment. Technologies. Resources. Proceedings of the International Scientific and Practical Conference, 3, 249-252.
  • Yu, Y. (2011). D-optimal designs via a cocktail algorithm. Statistics and Computing, 21, 475-481.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-306dcacb-26a0-40b4-aff3-6628830911b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.